x, y साठी सोडवा
x=-1
y = -\frac{9}{2} = -4\frac{1}{2} = -4.5
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
4x-2y=5,3x-4y=15
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
4x-2y=5
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
4x=2y+5
समीकरणाच्या दोन्ही बाजूस 2y जोडा.
x=\frac{1}{4}\left(2y+5\right)
दोन्ही बाजूंना 4 ने विभागा.
x=\frac{1}{2}y+\frac{5}{4}
2y+5 ला \frac{1}{4} वेळा गुणाकार करा.
3\left(\frac{1}{2}y+\frac{5}{4}\right)-4y=15
इतर समीकरणामध्ये x साठी \frac{y}{2}+\frac{5}{4} चा विकल्प वापरा, 3x-4y=15.
\frac{3}{2}y+\frac{15}{4}-4y=15
\frac{y}{2}+\frac{5}{4} ला 3 वेळा गुणाकार करा.
-\frac{5}{2}y+\frac{15}{4}=15
\frac{3y}{2} ते -4y जोडा.
-\frac{5}{2}y=\frac{45}{4}
समीकरणाच्या दोन्ही बाजूंमधून \frac{15}{4} वजा करा.
y=-\frac{9}{2}
समीकरणाच्या दोन्ही बाजूंना -\frac{5}{2} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=\frac{1}{2}\left(-\frac{9}{2}\right)+\frac{5}{4}
x=\frac{1}{2}y+\frac{5}{4} मध्ये y साठी -\frac{9}{2} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{-9+5}{4}
अंशाला अंशांच्या संख्येने आणि विभाजकाला विभाजकांच्या संख्येने गुणाकार करून -\frac{9}{2} चा \frac{1}{2} वेळा गुणाकार करा. नंतर शक्य तितक्या कमी टर्म्सपर्यंत अंश कमी करा.
x=-1
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{5}{4} ते -\frac{9}{4} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=-1,y=-\frac{9}{2}
सिस्टम आता सोडवली आहे.
4x-2y=5,3x-4y=15
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\15\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right))\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right))\left(\begin{matrix}5\\15\end{matrix}\right)
समीकरणाला \left(\begin{matrix}4&-2\\3&-4\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right))\left(\begin{matrix}5\\15\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right))\left(\begin{matrix}5\\15\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{4\left(-4\right)-\left(-2\times 3\right)}&-\frac{-2}{4\left(-4\right)-\left(-2\times 3\right)}\\-\frac{3}{4\left(-4\right)-\left(-2\times 3\right)}&\frac{4}{4\left(-4\right)-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}5\\15\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&-\frac{1}{5}\\\frac{3}{10}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}5\\15\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 5-\frac{1}{5}\times 15\\\frac{3}{10}\times 5-\frac{2}{5}\times 15\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-\frac{9}{2}\end{matrix}\right)
अंकगणित करा.
x=-1,y=-\frac{9}{2}
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
4x-2y=5,3x-4y=15
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
3\times 4x+3\left(-2\right)y=3\times 5,4\times 3x+4\left(-4\right)y=4\times 15
4x आणि 3x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 4 ने गुणाकार करा.
12x-6y=15,12x-16y=60
सरलीकृत करा.
12x-12x-6y+16y=15-60
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 12x-6y=15 मधून 12x-16y=60 वजा करा.
-6y+16y=15-60
12x ते -12x जोडा. 12x आणि -12x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
10y=15-60
-6y ते 16y जोडा.
10y=-45
15 ते -60 जोडा.
y=-\frac{9}{2}
दोन्ही बाजूंना 10 ने विभागा.
3x-4\left(-\frac{9}{2}\right)=15
3x-4y=15 मध्ये y साठी -\frac{9}{2} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
3x+18=15
-\frac{9}{2} ला -4 वेळा गुणाकार करा.
3x=-3
समीकरणाच्या दोन्ही बाजूंमधून 18 वजा करा.
x=-1
दोन्ही बाजूंना 3 ने विभागा.
x=-1,y=-\frac{9}{2}
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}