x, y साठी सोडवा
x=-3
y=-1
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
4x+9y=-21,3x+4y=-13
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
4x+9y=-21
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
4x=-9y-21
समीकरणाच्या दोन्ही बाजूंमधून 9y वजा करा.
x=\frac{1}{4}\left(-9y-21\right)
दोन्ही बाजूंना 4 ने विभागा.
x=-\frac{9}{4}y-\frac{21}{4}
-9y-21 ला \frac{1}{4} वेळा गुणाकार करा.
3\left(-\frac{9}{4}y-\frac{21}{4}\right)+4y=-13
इतर समीकरणामध्ये x साठी \frac{-9y-21}{4} चा विकल्प वापरा, 3x+4y=-13.
-\frac{27}{4}y-\frac{63}{4}+4y=-13
\frac{-9y-21}{4} ला 3 वेळा गुणाकार करा.
-\frac{11}{4}y-\frac{63}{4}=-13
-\frac{27y}{4} ते 4y जोडा.
-\frac{11}{4}y=\frac{11}{4}
समीकरणाच्या दोन्ही बाजूस \frac{63}{4} जोडा.
y=-1
समीकरणाच्या दोन्ही बाजूंना -\frac{11}{4} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=-\frac{9}{4}\left(-1\right)-\frac{21}{4}
x=-\frac{9}{4}y-\frac{21}{4} मध्ये y साठी -1 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{9-21}{4}
-1 ला -\frac{9}{4} वेळा गुणाकार करा.
x=-3
सामायिक विभाजक शोधून आणि अंशे जोडून -\frac{21}{4} ते \frac{9}{4} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=-3,y=-1
सिस्टम आता सोडवली आहे.
4x+9y=-21,3x+4y=-13
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}4&9\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-21\\-13\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}4&9\\3&4\end{matrix}\right))\left(\begin{matrix}4&9\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&9\\3&4\end{matrix}\right))\left(\begin{matrix}-21\\-13\end{matrix}\right)
समीकरणाला \left(\begin{matrix}4&9\\3&4\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&9\\3&4\end{matrix}\right))\left(\begin{matrix}-21\\-13\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&9\\3&4\end{matrix}\right))\left(\begin{matrix}-21\\-13\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4\times 4-9\times 3}&-\frac{9}{4\times 4-9\times 3}\\-\frac{3}{4\times 4-9\times 3}&\frac{4}{4\times 4-9\times 3}\end{matrix}\right)\left(\begin{matrix}-21\\-13\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{11}&\frac{9}{11}\\\frac{3}{11}&-\frac{4}{11}\end{matrix}\right)\left(\begin{matrix}-21\\-13\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{11}\left(-21\right)+\frac{9}{11}\left(-13\right)\\\frac{3}{11}\left(-21\right)-\frac{4}{11}\left(-13\right)\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-1\end{matrix}\right)
अंकगणित करा.
x=-3,y=-1
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
4x+9y=-21,3x+4y=-13
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
3\times 4x+3\times 9y=3\left(-21\right),4\times 3x+4\times 4y=4\left(-13\right)
4x आणि 3x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 4 ने गुणाकार करा.
12x+27y=-63,12x+16y=-52
सरलीकृत करा.
12x-12x+27y-16y=-63+52
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 12x+27y=-63 मधून 12x+16y=-52 वजा करा.
27y-16y=-63+52
12x ते -12x जोडा. 12x आणि -12x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
11y=-63+52
27y ते -16y जोडा.
11y=-11
-63 ते 52 जोडा.
y=-1
दोन्ही बाजूंना 11 ने विभागा.
3x+4\left(-1\right)=-13
3x+4y=-13 मध्ये y साठी -1 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
3x-4=-13
-1 ला 4 वेळा गुणाकार करा.
3x=-9
समीकरणाच्या दोन्ही बाजूस 4 जोडा.
x=-3
दोन्ही बाजूंना 3 ने विभागा.
x=-3,y=-1
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}