x, y साठी सोडवा
x=3
y=-2
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
4x+5y=2,3x+4y=1
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
4x+5y=2
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
4x=-5y+2
समीकरणाच्या दोन्ही बाजूंमधून 5y वजा करा.
x=\frac{1}{4}\left(-5y+2\right)
दोन्ही बाजूंना 4 ने विभागा.
x=-\frac{5}{4}y+\frac{1}{2}
-5y+2 ला \frac{1}{4} वेळा गुणाकार करा.
3\left(-\frac{5}{4}y+\frac{1}{2}\right)+4y=1
इतर समीकरणामध्ये x साठी -\frac{5y}{4}+\frac{1}{2} चा विकल्प वापरा, 3x+4y=1.
-\frac{15}{4}y+\frac{3}{2}+4y=1
-\frac{5y}{4}+\frac{1}{2} ला 3 वेळा गुणाकार करा.
\frac{1}{4}y+\frac{3}{2}=1
-\frac{15y}{4} ते 4y जोडा.
\frac{1}{4}y=-\frac{1}{2}
समीकरणाच्या दोन्ही बाजूंमधून \frac{3}{2} वजा करा.
y=-2
दोन्ही बाजूंना 4 ने गुणाकार करा.
x=-\frac{5}{4}\left(-2\right)+\frac{1}{2}
x=-\frac{5}{4}y+\frac{1}{2} मध्ये y साठी -2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{5+1}{2}
-2 ला -\frac{5}{4} वेळा गुणाकार करा.
x=3
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{1}{2} ते \frac{5}{2} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=3,y=-2
सिस्टम आता सोडवली आहे.
4x+5y=2,3x+4y=1
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}4&5\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}4&5\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
समीकरणाला \left(\begin{matrix}4&5\\3&4\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4\times 4-5\times 3}&-\frac{5}{4\times 4-5\times 3}\\-\frac{3}{4\times 4-5\times 3}&\frac{4}{4\times 4-5\times 3}\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4&-5\\-3&4\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\times 2-5\\-3\times 2+4\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
अंकगणित करा.
x=3,y=-2
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
4x+5y=2,3x+4y=1
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
3\times 4x+3\times 5y=3\times 2,4\times 3x+4\times 4y=4
4x आणि 3x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 4 ने गुणाकार करा.
12x+15y=6,12x+16y=4
सरलीकृत करा.
12x-12x+15y-16y=6-4
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 12x+15y=6 मधून 12x+16y=4 वजा करा.
15y-16y=6-4
12x ते -12x जोडा. 12x आणि -12x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-y=6-4
15y ते -16y जोडा.
-y=2
6 ते -4 जोडा.
y=-2
दोन्ही बाजूंना -1 ने विभागा.
3x+4\left(-2\right)=1
3x+4y=1 मध्ये y साठी -2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
3x-8=1
-2 ला 4 वेळा गुणाकार करा.
3x=9
समीकरणाच्या दोन्ही बाजूस 8 जोडा.
x=3
दोन्ही बाजूंना 3 ने विभागा.
x=3,y=-2
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}