y, x साठी सोडवा
x=75
y=-25
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
3y+2x=75,y+x=50
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
3y+2x=75
समान चिन्हाच्या डाव्या बाजूला y विलग करून, y साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
3y=-2x+75
समीकरणाच्या दोन्ही बाजूंमधून 2x वजा करा.
y=\frac{1}{3}\left(-2x+75\right)
दोन्ही बाजूंना 3 ने विभागा.
y=-\frac{2}{3}x+25
-2x+75 ला \frac{1}{3} वेळा गुणाकार करा.
-\frac{2}{3}x+25+x=50
इतर समीकरणामध्ये y साठी -\frac{2x}{3}+25 चा विकल्प वापरा, y+x=50.
\frac{1}{3}x+25=50
-\frac{2x}{3} ते x जोडा.
\frac{1}{3}x=25
समीकरणाच्या दोन्ही बाजूंमधून 25 वजा करा.
x=75
दोन्ही बाजूंना 3 ने गुणाकार करा.
y=-\frac{2}{3}\times 75+25
y=-\frac{2}{3}x+25 मध्ये x साठी 75 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण y साठी थेट सोडवू शकता.
y=-50+25
75 ला -\frac{2}{3} वेळा गुणाकार करा.
y=-25
25 ते -50 जोडा.
y=-25,x=75
सिस्टम आता सोडवली आहे.
3y+2x=75,y+x=50
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}3&2\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}75\\50\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}3&2\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}75\\50\end{matrix}\right)
समीकरणाला \left(\begin{matrix}3&2\\1&1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}75\\50\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}75\\50\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-2}&-\frac{2}{3-2}\\-\frac{1}{3-2}&\frac{3}{3-2}\end{matrix}\right)\left(\begin{matrix}75\\50\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1&-2\\-1&3\end{matrix}\right)\left(\begin{matrix}75\\50\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}75-2\times 50\\-75+3\times 50\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-25\\75\end{matrix}\right)
अंकगणित करा.
y=-25,x=75
मॅट्रिक्सचे y आणि x घटक बाहेर काढा.
3y+2x=75,y+x=50
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
3y+2x=75,3y+3x=3\times 50
3y आणि y समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 1 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने गुणाकार करा.
3y+2x=75,3y+3x=150
सरलीकृत करा.
3y-3y+2x-3x=75-150
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 3y+2x=75 मधून 3y+3x=150 वजा करा.
2x-3x=75-150
3y ते -3y जोडा. 3y आणि -3y रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-x=75-150
2x ते -3x जोडा.
-x=-75
75 ते -150 जोडा.
x=75
दोन्ही बाजूंना -1 ने विभागा.
y+75=50
y+x=50 मध्ये x साठी 75 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण y साठी थेट सोडवू शकता.
y=-25
समीकरणाच्या दोन्ही बाजूंमधून 75 वजा करा.
y=-25,x=75
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}