मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

3x-y-2=0,2x+y-8=0
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
3x-y-2=0
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
3x-y=2
समीकरणाच्या दोन्ही बाजूस 2 जोडा.
3x=y+2
समीकरणाच्या दोन्ही बाजूस y जोडा.
x=\frac{1}{3}\left(y+2\right)
दोन्ही बाजूंना 3 ने विभागा.
x=\frac{1}{3}y+\frac{2}{3}
y+2 ला \frac{1}{3} वेळा गुणाकार करा.
2\left(\frac{1}{3}y+\frac{2}{3}\right)+y-8=0
इतर समीकरणामध्ये x साठी \frac{2+y}{3} चा विकल्प वापरा, 2x+y-8=0.
\frac{2}{3}y+\frac{4}{3}+y-8=0
\frac{2+y}{3} ला 2 वेळा गुणाकार करा.
\frac{5}{3}y+\frac{4}{3}-8=0
\frac{2y}{3} ते y जोडा.
\frac{5}{3}y-\frac{20}{3}=0
\frac{4}{3} ते -8 जोडा.
\frac{5}{3}y=\frac{20}{3}
समीकरणाच्या दोन्ही बाजूस \frac{20}{3} जोडा.
y=4
समीकरणाच्या दोन्ही बाजूंना \frac{5}{3} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=\frac{1}{3}\times 4+\frac{2}{3}
x=\frac{1}{3}y+\frac{2}{3} मध्ये y साठी 4 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{4+2}{3}
4 ला \frac{1}{3} वेळा गुणाकार करा.
x=2
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{2}{3} ते \frac{4}{3} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=2,y=4
सिस्टम आता सोडवली आहे.
3x-y-2=0,2x+y-8=0
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}3&-1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\8\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}3&-1\\2&1\end{matrix}\right))\left(\begin{matrix}3&-1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\2&1\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
समीकरणाला \left(\begin{matrix}3&-1\\2&1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\2&1\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\2&1\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-2\right)}&-\frac{-1}{3-\left(-2\right)}\\-\frac{2}{3-\left(-2\right)}&\frac{3}{3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\-\frac{2}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 2+\frac{1}{5}\times 8\\-\frac{2}{5}\times 2+\frac{3}{5}\times 8\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\4\end{matrix}\right)
अंकगणित करा.
x=2,y=4
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
3x-y-2=0,2x+y-8=0
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
2\times 3x+2\left(-1\right)y+2\left(-2\right)=0,3\times 2x+3y+3\left(-8\right)=0
3x आणि 2x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने गुणाकार करा.
6x-2y-4=0,6x+3y-24=0
सरलीकृत करा.
6x-6x-2y-3y-4+24=0
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 6x-2y-4=0 मधून 6x+3y-24=0 वजा करा.
-2y-3y-4+24=0
6x ते -6x जोडा. 6x आणि -6x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-5y-4+24=0
-2y ते -3y जोडा.
-5y+20=0
-4 ते 24 जोडा.
-5y=-20
समीकरणाच्या दोन्ही बाजूंमधून 20 वजा करा.
y=4
दोन्ही बाजूंना -5 ने विभागा.
2x+4-8=0
2x+y-8=0 मध्ये y साठी 4 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
2x-4=0
4 ते -8 जोडा.
2x=4
समीकरणाच्या दोन्ही बाजूस 4 जोडा.
x=2
दोन्ही बाजूंना 2 ने विभागा.
x=2,y=4
सिस्टम आता सोडवली आहे.