मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

3x+y=0,2x-5y=6
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
3x+y=0
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
3x=-y
समीकरणाच्या दोन्ही बाजूंमधून y वजा करा.
x=\frac{1}{3}\left(-1\right)y
दोन्ही बाजूंना 3 ने विभागा.
x=-\frac{1}{3}y
-y ला \frac{1}{3} वेळा गुणाकार करा.
2\left(-\frac{1}{3}\right)y-5y=6
इतर समीकरणामध्ये x साठी -\frac{y}{3} चा विकल्प वापरा, 2x-5y=6.
-\frac{2}{3}y-5y=6
-\frac{y}{3} ला 2 वेळा गुणाकार करा.
-\frac{17}{3}y=6
-\frac{2y}{3} ते -5y जोडा.
y=-\frac{18}{17}
समीकरणाच्या दोन्ही बाजूंना -\frac{17}{3} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=-\frac{1}{3}\left(-\frac{18}{17}\right)
x=-\frac{1}{3}y मध्ये y साठी -\frac{18}{17} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{6}{17}
अंशाला अंशांच्या संख्येने आणि विभाजकाला विभाजकांच्या संख्येने गुणाकार करून -\frac{18}{17} चा -\frac{1}{3} वेळा गुणाकार करा. नंतर शक्य तितक्या कमी टर्म्सपर्यंत अंश कमी करा.
x=\frac{6}{17},y=-\frac{18}{17}
सिस्टम आता सोडवली आहे.
3x+y=0,2x-5y=6
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}3&1\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\6\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}3&1\\2&-5\end{matrix}\right))\left(\begin{matrix}3&1\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-5\end{matrix}\right))\left(\begin{matrix}0\\6\end{matrix}\right)
समीकरणाला \left(\begin{matrix}3&1\\2&-5\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-5\end{matrix}\right))\left(\begin{matrix}0\\6\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-5\end{matrix}\right))\left(\begin{matrix}0\\6\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3\left(-5\right)-2}&-\frac{1}{3\left(-5\right)-2}\\-\frac{2}{3\left(-5\right)-2}&\frac{3}{3\left(-5\right)-2}\end{matrix}\right)\left(\begin{matrix}0\\6\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}&\frac{1}{17}\\\frac{2}{17}&-\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}0\\6\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}\times 6\\-\frac{3}{17}\times 6\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{17}\\-\frac{18}{17}\end{matrix}\right)
अंकगणित करा.
x=\frac{6}{17},y=-\frac{18}{17}
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
3x+y=0,2x-5y=6
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
2\times 3x+2y=0,3\times 2x+3\left(-5\right)y=3\times 6
3x आणि 2x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने गुणाकार करा.
6x+2y=0,6x-15y=18
सरलीकृत करा.
6x-6x+2y+15y=-18
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 6x+2y=0 मधून 6x-15y=18 वजा करा.
2y+15y=-18
6x ते -6x जोडा. 6x आणि -6x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
17y=-18
2y ते 15y जोडा.
y=-\frac{18}{17}
दोन्ही बाजूंना 17 ने विभागा.
2x-5\left(-\frac{18}{17}\right)=6
2x-5y=6 मध्ये y साठी -\frac{18}{17} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
2x+\frac{90}{17}=6
-\frac{18}{17} ला -5 वेळा गुणाकार करा.
2x=\frac{12}{17}
समीकरणाच्या दोन्ही बाजूंमधून \frac{90}{17} वजा करा.
x=\frac{6}{17}
दोन्ही बाजूंना 2 ने विभागा.
x=\frac{6}{17},y=-\frac{18}{17}
सिस्टम आता सोडवली आहे.