मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

3x+6y=1,x+y=0
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
3x+6y=1
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
3x=-6y+1
समीकरणाच्या दोन्ही बाजूंमधून 6y वजा करा.
x=\frac{1}{3}\left(-6y+1\right)
दोन्ही बाजूंना 3 ने विभागा.
x=-2y+\frac{1}{3}
-6y+1 ला \frac{1}{3} वेळा गुणाकार करा.
-2y+\frac{1}{3}+y=0
इतर समीकरणामध्ये x साठी -2y+\frac{1}{3} चा विकल्प वापरा, x+y=0.
-y+\frac{1}{3}=0
-2y ते y जोडा.
-y=-\frac{1}{3}
समीकरणाच्या दोन्ही बाजूंमधून \frac{1}{3} वजा करा.
y=\frac{1}{3}
दोन्ही बाजूंना -1 ने विभागा.
x=-2\times \frac{1}{3}+\frac{1}{3}
x=-2y+\frac{1}{3} मध्ये y साठी \frac{1}{3} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{-2+1}{3}
\frac{1}{3} ला -2 वेळा गुणाकार करा.
x=-\frac{1}{3}
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{1}{3} ते -\frac{2}{3} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=-\frac{1}{3},y=\frac{1}{3}
सिस्टम आता सोडवली आहे.
3x+6y=1,x+y=0
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}3&6\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\0\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}3&6\\1&1\end{matrix}\right))\left(\begin{matrix}3&6\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&6\\1&1\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
समीकरणाला \left(\begin{matrix}3&6\\1&1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&6\\1&1\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&6\\1&1\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-6}&-\frac{6}{3-6}\\-\frac{1}{3-6}&\frac{3}{3-6}\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&2\\\frac{1}{3}&-1\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\\\frac{1}{3}\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
x=-\frac{1}{3},y=\frac{1}{3}
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
3x+6y=1,x+y=0
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
3x+6y=1,3x+3y=0
3x आणि x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 1 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने गुणाकार करा.
3x-3x+6y-3y=1
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 3x+6y=1 मधून 3x+3y=0 वजा करा.
6y-3y=1
3x ते -3x जोडा. 3x आणि -3x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
3y=1
6y ते -3y जोडा.
y=\frac{1}{3}
दोन्ही बाजूंना 3 ने विभागा.
x+\frac{1}{3}=0
x+y=0 मध्ये y साठी \frac{1}{3} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-\frac{1}{3}
समीकरणाच्या दोन्ही बाजूंमधून \frac{1}{3} वजा करा.
x=-\frac{1}{3},y=\frac{1}{3}
सिस्टम आता सोडवली आहे.