मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

3x+5y=7,2x+y=-9
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
3x+5y=7
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
3x=-5y+7
समीकरणाच्या दोन्ही बाजूंमधून 5y वजा करा.
x=\frac{1}{3}\left(-5y+7\right)
दोन्ही बाजूंना 3 ने विभागा.
x=-\frac{5}{3}y+\frac{7}{3}
-5y+7 ला \frac{1}{3} वेळा गुणाकार करा.
2\left(-\frac{5}{3}y+\frac{7}{3}\right)+y=-9
इतर समीकरणामध्ये x साठी \frac{-5y+7}{3} चा विकल्प वापरा, 2x+y=-9.
-\frac{10}{3}y+\frac{14}{3}+y=-9
\frac{-5y+7}{3} ला 2 वेळा गुणाकार करा.
-\frac{7}{3}y+\frac{14}{3}=-9
-\frac{10y}{3} ते y जोडा.
-\frac{7}{3}y=-\frac{41}{3}
समीकरणाच्या दोन्ही बाजूंमधून \frac{14}{3} वजा करा.
y=\frac{41}{7}
समीकरणाच्या दोन्ही बाजूंना -\frac{7}{3} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=-\frac{5}{3}\times \frac{41}{7}+\frac{7}{3}
x=-\frac{5}{3}y+\frac{7}{3} मध्ये y साठी \frac{41}{7} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-\frac{205}{21}+\frac{7}{3}
अंशाला अंशांच्या संख्येने आणि विभाजकाला विभाजकांच्या संख्येने गुणाकार करून \frac{41}{7} चा -\frac{5}{3} वेळा गुणाकार करा. नंतर शक्य तितक्या कमी टर्म्सपर्यंत अंश कमी करा.
x=-\frac{52}{7}
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{7}{3} ते -\frac{205}{21} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=-\frac{52}{7},y=\frac{41}{7}
सिस्टम आता सोडवली आहे.
3x+5y=7,2x+y=-9
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}3&5\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-9\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}3&5\\2&1\end{matrix}\right))\left(\begin{matrix}3&5\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&1\end{matrix}\right))\left(\begin{matrix}7\\-9\end{matrix}\right)
समीकरणाला \left(\begin{matrix}3&5\\2&1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&1\end{matrix}\right))\left(\begin{matrix}7\\-9\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&1\end{matrix}\right))\left(\begin{matrix}7\\-9\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-5\times 2}&-\frac{5}{3-5\times 2}\\-\frac{2}{3-5\times 2}&\frac{3}{3-5\times 2}\end{matrix}\right)\left(\begin{matrix}7\\-9\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}&\frac{5}{7}\\\frac{2}{7}&-\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}7\\-9\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}\times 7+\frac{5}{7}\left(-9\right)\\\frac{2}{7}\times 7-\frac{3}{7}\left(-9\right)\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{52}{7}\\\frac{41}{7}\end{matrix}\right)
अंकगणित करा.
x=-\frac{52}{7},y=\frac{41}{7}
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
3x+5y=7,2x+y=-9
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
2\times 3x+2\times 5y=2\times 7,3\times 2x+3y=3\left(-9\right)
3x आणि 2x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने गुणाकार करा.
6x+10y=14,6x+3y=-27
सरलीकृत करा.
6x-6x+10y-3y=14+27
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 6x+10y=14 मधून 6x+3y=-27 वजा करा.
10y-3y=14+27
6x ते -6x जोडा. 6x आणि -6x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
7y=14+27
10y ते -3y जोडा.
7y=41
14 ते 27 जोडा.
y=\frac{41}{7}
दोन्ही बाजूंना 7 ने विभागा.
2x+\frac{41}{7}=-9
2x+y=-9 मध्ये y साठी \frac{41}{7} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
2x=-\frac{104}{7}
समीकरणाच्या दोन्ही बाजूंमधून \frac{41}{7} वजा करा.
x=-\frac{52}{7}
दोन्ही बाजूंना 2 ने विभागा.
x=-\frac{52}{7},y=\frac{41}{7}
सिस्टम आता सोडवली आहे.