मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

3x+2y=-10,2x-10y=-1
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
3x+2y=-10
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
3x=-2y-10
समीकरणाच्या दोन्ही बाजूंमधून 2y वजा करा.
x=\frac{1}{3}\left(-2y-10\right)
दोन्ही बाजूंना 3 ने विभागा.
x=-\frac{2}{3}y-\frac{10}{3}
-2y-10 ला \frac{1}{3} वेळा गुणाकार करा.
2\left(-\frac{2}{3}y-\frac{10}{3}\right)-10y=-1
इतर समीकरणामध्ये x साठी \frac{-2y-10}{3} चा विकल्प वापरा, 2x-10y=-1.
-\frac{4}{3}y-\frac{20}{3}-10y=-1
\frac{-2y-10}{3} ला 2 वेळा गुणाकार करा.
-\frac{34}{3}y-\frac{20}{3}=-1
-\frac{4y}{3} ते -10y जोडा.
-\frac{34}{3}y=\frac{17}{3}
समीकरणाच्या दोन्ही बाजूस \frac{20}{3} जोडा.
y=-\frac{1}{2}
समीकरणाच्या दोन्ही बाजूंना -\frac{34}{3} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=-\frac{2}{3}\left(-\frac{1}{2}\right)-\frac{10}{3}
x=-\frac{2}{3}y-\frac{10}{3} मध्ये y साठी -\frac{1}{2} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{1-10}{3}
अंशाला अंशांच्या संख्येने आणि विभाजकाला विभाजकांच्या संख्येने गुणाकार करून -\frac{1}{2} चा -\frac{2}{3} वेळा गुणाकार करा. नंतर शक्य तितक्या कमी टर्म्सपर्यंत अंश कमी करा.
x=-3
सामायिक विभाजक शोधून आणि अंशे जोडून -\frac{10}{3} ते \frac{1}{3} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=-3,y=-\frac{1}{2}
सिस्टम आता सोडवली आहे.
3x+2y=-10,2x-10y=-1
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}3&2\\2&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\-1\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}3&2\\2&-10\end{matrix}\right))\left(\begin{matrix}3&2\\2&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-10\end{matrix}\right))\left(\begin{matrix}-10\\-1\end{matrix}\right)
समीकरणाला \left(\begin{matrix}3&2\\2&-10\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-10\end{matrix}\right))\left(\begin{matrix}-10\\-1\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-10\end{matrix}\right))\left(\begin{matrix}-10\\-1\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{3\left(-10\right)-2\times 2}&-\frac{2}{3\left(-10\right)-2\times 2}\\-\frac{2}{3\left(-10\right)-2\times 2}&\frac{3}{3\left(-10\right)-2\times 2}\end{matrix}\right)\left(\begin{matrix}-10\\-1\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}&\frac{1}{17}\\\frac{1}{17}&-\frac{3}{34}\end{matrix}\right)\left(\begin{matrix}-10\\-1\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}\left(-10\right)+\frac{1}{17}\left(-1\right)\\\frac{1}{17}\left(-10\right)-\frac{3}{34}\left(-1\right)\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-\frac{1}{2}\end{matrix}\right)
अंकगणित करा.
x=-3,y=-\frac{1}{2}
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
3x+2y=-10,2x-10y=-1
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
2\times 3x+2\times 2y=2\left(-10\right),3\times 2x+3\left(-10\right)y=3\left(-1\right)
3x आणि 2x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने गुणाकार करा.
6x+4y=-20,6x-30y=-3
सरलीकृत करा.
6x-6x+4y+30y=-20+3
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 6x+4y=-20 मधून 6x-30y=-3 वजा करा.
4y+30y=-20+3
6x ते -6x जोडा. 6x आणि -6x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
34y=-20+3
4y ते 30y जोडा.
34y=-17
-20 ते 3 जोडा.
y=-\frac{1}{2}
दोन्ही बाजूंना 34 ने विभागा.
2x-10\left(-\frac{1}{2}\right)=-1
2x-10y=-1 मध्ये y साठी -\frac{1}{2} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
2x+5=-1
-\frac{1}{2} ला -10 वेळा गुणाकार करा.
2x=-6
समीकरणाच्या दोन्ही बाजूंमधून 5 वजा करा.
x=-3
दोन्ही बाजूंना 2 ने विभागा.
x=-3,y=-\frac{1}{2}
सिस्टम आता सोडवली आहे.