मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

y-5x=-1
दुसर्‍या समीकरणाचा विचार करा. दोन्ही बाजूंकडून 5x वजा करा.
2x-y=-2,-5x+y=-1
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
2x-y=-2
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
2x=y-2
समीकरणाच्या दोन्ही बाजूस y जोडा.
x=\frac{1}{2}\left(y-2\right)
दोन्ही बाजूंना 2 ने विभागा.
x=\frac{1}{2}y-1
y-2 ला \frac{1}{2} वेळा गुणाकार करा.
-5\left(\frac{1}{2}y-1\right)+y=-1
इतर समीकरणामध्ये x साठी \frac{y}{2}-1 चा विकल्प वापरा, -5x+y=-1.
-\frac{5}{2}y+5+y=-1
\frac{y}{2}-1 ला -5 वेळा गुणाकार करा.
-\frac{3}{2}y+5=-1
-\frac{5y}{2} ते y जोडा.
-\frac{3}{2}y=-6
समीकरणाच्या दोन्ही बाजूंमधून 5 वजा करा.
y=4
समीकरणाच्या दोन्ही बाजूंना -\frac{3}{2} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=\frac{1}{2}\times 4-1
x=\frac{1}{2}y-1 मध्ये y साठी 4 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=2-1
4 ला \frac{1}{2} वेळा गुणाकार करा.
x=1
-1 ते 2 जोडा.
x=1,y=4
सिस्टम आता सोडवली आहे.
y-5x=-1
दुसर्‍या समीकरणाचा विचार करा. दोन्ही बाजूंकडून 5x वजा करा.
2x-y=-2,-5x+y=-1
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right))\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
समीकरणाला \left(\begin{matrix}2&-1\\-5&1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-\left(-5\right)\right)}&-\frac{-1}{2-\left(-\left(-5\right)\right)}\\-\frac{-5}{2-\left(-\left(-5\right)\right)}&\frac{2}{2-\left(-\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&-\frac{1}{3}\\-\frac{5}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-2\right)-\frac{1}{3}\left(-1\right)\\-\frac{5}{3}\left(-2\right)-\frac{2}{3}\left(-1\right)\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
अंकगणित करा.
x=1,y=4
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
y-5x=-1
दुसर्‍या समीकरणाचा विचार करा. दोन्ही बाजूंकडून 5x वजा करा.
2x-y=-2,-5x+y=-1
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
-5\times 2x-5\left(-1\right)y=-5\left(-2\right),2\left(-5\right)x+2y=2\left(-1\right)
2x आणि -5x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना -5 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने गुणाकार करा.
-10x+5y=10,-10x+2y=-2
सरलीकृत करा.
-10x+10x+5y-2y=10+2
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून -10x+5y=10 मधून -10x+2y=-2 वजा करा.
5y-2y=10+2
-10x ते 10x जोडा. -10x आणि 10x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
3y=10+2
5y ते -2y जोडा.
3y=12
10 ते 2 जोडा.
y=4
दोन्ही बाजूंना 3 ने विभागा.
-5x+4=-1
-5x+y=-1 मध्ये y साठी 4 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
-5x=-5
समीकरणाच्या दोन्ही बाजूंमधून 4 वजा करा.
x=1
दोन्ही बाजूंना -5 ने विभागा.
x=1,y=4
सिस्टम आता सोडवली आहे.