x, y साठी सोडवा
x = \frac{48}{19} = 2\frac{10}{19} \approx 2.526315789
y=\frac{4}{19}\approx 0.210526316
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
2x-5y=4,3x+2y=8
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
2x-5y=4
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
2x=5y+4
समीकरणाच्या दोन्ही बाजूस 5y जोडा.
x=\frac{1}{2}\left(5y+4\right)
दोन्ही बाजूंना 2 ने विभागा.
x=\frac{5}{2}y+2
5y+4 ला \frac{1}{2} वेळा गुणाकार करा.
3\left(\frac{5}{2}y+2\right)+2y=8
इतर समीकरणामध्ये x साठी \frac{5y}{2}+2 चा विकल्प वापरा, 3x+2y=8.
\frac{15}{2}y+6+2y=8
\frac{5y}{2}+2 ला 3 वेळा गुणाकार करा.
\frac{19}{2}y+6=8
\frac{15y}{2} ते 2y जोडा.
\frac{19}{2}y=2
समीकरणाच्या दोन्ही बाजूंमधून 6 वजा करा.
y=\frac{4}{19}
समीकरणाच्या दोन्ही बाजूंना \frac{19}{2} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=\frac{5}{2}\times \frac{4}{19}+2
x=\frac{5}{2}y+2 मध्ये y साठी \frac{4}{19} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{10}{19}+2
अंशाला अंशांच्या संख्येने आणि विभाजकाला विभाजकांच्या संख्येने गुणाकार करून \frac{4}{19} चा \frac{5}{2} वेळा गुणाकार करा. नंतर शक्य तितक्या कमी टर्म्सपर्यंत अंश कमी करा.
x=\frac{48}{19}
2 ते \frac{10}{19} जोडा.
x=\frac{48}{19},y=\frac{4}{19}
सिस्टम आता सोडवली आहे.
2x-5y=4,3x+2y=8
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}2&-5\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\8\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}2&-5\\3&2\end{matrix}\right))\left(\begin{matrix}2&-5\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\3&2\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
समीकरणाला \left(\begin{matrix}2&-5\\3&2\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\3&2\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\3&2\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-5\times 3\right)}&-\frac{-5}{2\times 2-\left(-5\times 3\right)}\\-\frac{3}{2\times 2-\left(-5\times 3\right)}&\frac{2}{2\times 2-\left(-5\times 3\right)}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}&\frac{5}{19}\\-\frac{3}{19}&\frac{2}{19}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}\times 4+\frac{5}{19}\times 8\\-\frac{3}{19}\times 4+\frac{2}{19}\times 8\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{48}{19}\\\frac{4}{19}\end{matrix}\right)
अंकगणित करा.
x=\frac{48}{19},y=\frac{4}{19}
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
2x-5y=4,3x+2y=8
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
3\times 2x+3\left(-5\right)y=3\times 4,2\times 3x+2\times 2y=2\times 8
2x आणि 3x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने गुणाकार करा.
6x-15y=12,6x+4y=16
सरलीकृत करा.
6x-6x-15y-4y=12-16
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 6x-15y=12 मधून 6x+4y=16 वजा करा.
-15y-4y=12-16
6x ते -6x जोडा. 6x आणि -6x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-19y=12-16
-15y ते -4y जोडा.
-19y=-4
12 ते -16 जोडा.
y=\frac{4}{19}
दोन्ही बाजूंना -19 ने विभागा.
3x+2\times \frac{4}{19}=8
3x+2y=8 मध्ये y साठी \frac{4}{19} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
3x+\frac{8}{19}=8
\frac{4}{19} ला 2 वेळा गुणाकार करा.
3x=\frac{144}{19}
समीकरणाच्या दोन्ही बाजूंमधून \frac{8}{19} वजा करा.
x=\frac{48}{19}
दोन्ही बाजूंना 3 ने विभागा.
x=\frac{48}{19},y=\frac{4}{19}
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}