मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

2x-3y=12,4x+3y=24
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
2x-3y=12
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
2x=3y+12
समीकरणाच्या दोन्ही बाजूस 3y जोडा.
x=\frac{1}{2}\left(3y+12\right)
दोन्ही बाजूंना 2 ने विभागा.
x=\frac{3}{2}y+6
12+3y ला \frac{1}{2} वेळा गुणाकार करा.
4\left(\frac{3}{2}y+6\right)+3y=24
इतर समीकरणामध्ये x साठी \frac{3y}{2}+6 चा विकल्प वापरा, 4x+3y=24.
6y+24+3y=24
\frac{3y}{2}+6 ला 4 वेळा गुणाकार करा.
9y+24=24
6y ते 3y जोडा.
9y=0
समीकरणाच्या दोन्ही बाजूंमधून 24 वजा करा.
y=0
दोन्ही बाजूंना 9 ने विभागा.
x=6
x=\frac{3}{2}y+6 मध्ये y साठी 0 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=6,y=0
सिस्टम आता सोडवली आहे.
2x-3y=12,4x+3y=24
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}2&-3\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\24\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}2&-3\\4&3\end{matrix}\right))\left(\begin{matrix}2&-3\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&3\end{matrix}\right))\left(\begin{matrix}12\\24\end{matrix}\right)
समीकरणाला \left(\begin{matrix}2&-3\\4&3\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&3\end{matrix}\right))\left(\begin{matrix}12\\24\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&3\end{matrix}\right))\left(\begin{matrix}12\\24\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-3\times 4\right)}&-\frac{-3}{2\times 3-\left(-3\times 4\right)}\\-\frac{4}{2\times 3-\left(-3\times 4\right)}&\frac{2}{2\times 3-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}12\\24\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\-\frac{2}{9}&\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}12\\24\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 12+\frac{1}{6}\times 24\\-\frac{2}{9}\times 12+\frac{1}{9}\times 24\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\0\end{matrix}\right)
अंकगणित करा.
x=6,y=0
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
2x-3y=12,4x+3y=24
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
4\times 2x+4\left(-3\right)y=4\times 12,2\times 4x+2\times 3y=2\times 24
2x आणि 4x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 4 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने गुणाकार करा.
8x-12y=48,8x+6y=48
सरलीकृत करा.
8x-8x-12y-6y=48-48
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 8x-12y=48 मधून 8x+6y=48 वजा करा.
-12y-6y=48-48
8x ते -8x जोडा. 8x आणि -8x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-18y=48-48
-12y ते -6y जोडा.
-18y=0
48 ते -48 जोडा.
y=0
दोन्ही बाजूंना -18 ने विभागा.
4x=24
4x+3y=24 मध्ये y साठी 0 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=6
दोन्ही बाजूंना 4 ने विभागा.
x=6,y=0
सिस्टम आता सोडवली आहे.