मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

2x+y=6,6x-y=2
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
2x+y=6
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
2x=-y+6
समीकरणाच्या दोन्ही बाजूंमधून y वजा करा.
x=\frac{1}{2}\left(-y+6\right)
दोन्ही बाजूंना 2 ने विभागा.
x=-\frac{1}{2}y+3
-y+6 ला \frac{1}{2} वेळा गुणाकार करा.
6\left(-\frac{1}{2}y+3\right)-y=2
इतर समीकरणामध्ये x साठी -\frac{y}{2}+3 चा विकल्प वापरा, 6x-y=2.
-3y+18-y=2
-\frac{y}{2}+3 ला 6 वेळा गुणाकार करा.
-4y+18=2
-3y ते -y जोडा.
-4y=-16
समीकरणाच्या दोन्ही बाजूंमधून 18 वजा करा.
y=4
दोन्ही बाजूंना -4 ने विभागा.
x=-\frac{1}{2}\times 4+3
x=-\frac{1}{2}y+3 मध्ये y साठी 4 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-2+3
4 ला -\frac{1}{2} वेळा गुणाकार करा.
x=1
3 ते -2 जोडा.
x=1,y=4
सिस्टम आता सोडवली आहे.
2x+y=6,6x-y=2
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}2&1\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\2\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}2&1\\6&-1\end{matrix}\right))\left(\begin{matrix}2&1\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&-1\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
समीकरणाला \left(\begin{matrix}2&1\\6&-1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&-1\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&-1\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-6}&-\frac{1}{2\left(-1\right)-6}\\-\frac{6}{2\left(-1\right)-6}&\frac{2}{2\left(-1\right)-6}\end{matrix}\right)\left(\begin{matrix}6\\2\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\\frac{3}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}6\\2\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 6+\frac{1}{8}\times 2\\\frac{3}{4}\times 6-\frac{1}{4}\times 2\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
अंकगणित करा.
x=1,y=4
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
2x+y=6,6x-y=2
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
6\times 2x+6y=6\times 6,2\times 6x+2\left(-1\right)y=2\times 2
2x आणि 6x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 6 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने गुणाकार करा.
12x+6y=36,12x-2y=4
सरलीकृत करा.
12x-12x+6y+2y=36-4
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 12x+6y=36 मधून 12x-2y=4 वजा करा.
6y+2y=36-4
12x ते -12x जोडा. 12x आणि -12x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
8y=36-4
6y ते 2y जोडा.
8y=32
36 ते -4 जोडा.
y=4
दोन्ही बाजूंना 8 ने विभागा.
6x-4=2
6x-y=2 मध्ये y साठी 4 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
6x=6
समीकरणाच्या दोन्ही बाजूस 4 जोडा.
x=1
दोन्ही बाजूंना 6 ने विभागा.
x=1,y=4
सिस्टम आता सोडवली आहे.