x, y साठी सोडवा
x = -\frac{87}{7} = -12\frac{3}{7} \approx -12.428571429
y = \frac{41}{7} = 5\frac{6}{7} \approx 5.857142857
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
2x+y=-19,x+4y=11
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
2x+y=-19
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
2x=-y-19
समीकरणाच्या दोन्ही बाजूंमधून y वजा करा.
x=\frac{1}{2}\left(-y-19\right)
दोन्ही बाजूंना 2 ने विभागा.
x=-\frac{1}{2}y-\frac{19}{2}
-y-19 ला \frac{1}{2} वेळा गुणाकार करा.
-\frac{1}{2}y-\frac{19}{2}+4y=11
इतर समीकरणामध्ये x साठी \frac{-y-19}{2} चा विकल्प वापरा, x+4y=11.
\frac{7}{2}y-\frac{19}{2}=11
-\frac{y}{2} ते 4y जोडा.
\frac{7}{2}y=\frac{41}{2}
समीकरणाच्या दोन्ही बाजूस \frac{19}{2} जोडा.
y=\frac{41}{7}
समीकरणाच्या दोन्ही बाजूंना \frac{7}{2} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=-\frac{1}{2}\times \frac{41}{7}-\frac{19}{2}
x=-\frac{1}{2}y-\frac{19}{2} मध्ये y साठी \frac{41}{7} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-\frac{41}{14}-\frac{19}{2}
अंशाला अंशांच्या संख्येने आणि विभाजकाला विभाजकांच्या संख्येने गुणाकार करून \frac{41}{7} चा -\frac{1}{2} वेळा गुणाकार करा. नंतर शक्य तितक्या कमी टर्म्सपर्यंत अंश कमी करा.
x=-\frac{87}{7}
सामायिक विभाजक शोधून आणि अंशे जोडून -\frac{19}{2} ते -\frac{41}{14} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=-\frac{87}{7},y=\frac{41}{7}
सिस्टम आता सोडवली आहे.
2x+y=-19,x+4y=11
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}2&1\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-19\\11\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}2&1\\1&4\end{matrix}\right))\left(\begin{matrix}2&1\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&4\end{matrix}\right))\left(\begin{matrix}-19\\11\end{matrix}\right)
समीकरणाला \left(\begin{matrix}2&1\\1&4\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&4\end{matrix}\right))\left(\begin{matrix}-19\\11\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&4\end{matrix}\right))\left(\begin{matrix}-19\\11\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-1}&-\frac{1}{2\times 4-1}\\-\frac{1}{2\times 4-1}&\frac{2}{2\times 4-1}\end{matrix}\right)\left(\begin{matrix}-19\\11\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}&-\frac{1}{7}\\-\frac{1}{7}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}-19\\11\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}\left(-19\right)-\frac{1}{7}\times 11\\-\frac{1}{7}\left(-19\right)+\frac{2}{7}\times 11\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{87}{7}\\\frac{41}{7}\end{matrix}\right)
अंकगणित करा.
x=-\frac{87}{7},y=\frac{41}{7}
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
2x+y=-19,x+4y=11
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
2x+y=-19,2x+2\times 4y=2\times 11
2x आणि x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 1 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने गुणाकार करा.
2x+y=-19,2x+8y=22
सरलीकृत करा.
2x-2x+y-8y=-19-22
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 2x+y=-19 मधून 2x+8y=22 वजा करा.
y-8y=-19-22
2x ते -2x जोडा. 2x आणि -2x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-7y=-19-22
y ते -8y जोडा.
-7y=-41
-19 ते -22 जोडा.
y=\frac{41}{7}
दोन्ही बाजूंना -7 ने विभागा.
x+4\times \frac{41}{7}=11
x+4y=11 मध्ये y साठी \frac{41}{7} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x+\frac{164}{7}=11
\frac{41}{7} ला 4 वेळा गुणाकार करा.
x=-\frac{87}{7}
समीकरणाच्या दोन्ही बाजूंमधून \frac{164}{7} वजा करा.
x=-\frac{87}{7},y=\frac{41}{7}
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}