x, y साठी सोडवा
x = -\frac{72}{13} = -5\frac{7}{13} \approx -5.538461538
y = \frac{73}{13} = 5\frac{8}{13} \approx 5.615384615
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
6y+5x=6
दुसर्या समीकरणाचा विचार करा. दोन्ही बाजूंना 5x जोडा.
2x+5y=17,5x+6y=6
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
2x+5y=17
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
2x=-5y+17
समीकरणाच्या दोन्ही बाजूंमधून 5y वजा करा.
x=\frac{1}{2}\left(-5y+17\right)
दोन्ही बाजूंना 2 ने विभागा.
x=-\frac{5}{2}y+\frac{17}{2}
-5y+17 ला \frac{1}{2} वेळा गुणाकार करा.
5\left(-\frac{5}{2}y+\frac{17}{2}\right)+6y=6
इतर समीकरणामध्ये x साठी \frac{-5y+17}{2} चा विकल्प वापरा, 5x+6y=6.
-\frac{25}{2}y+\frac{85}{2}+6y=6
\frac{-5y+17}{2} ला 5 वेळा गुणाकार करा.
-\frac{13}{2}y+\frac{85}{2}=6
-\frac{25y}{2} ते 6y जोडा.
-\frac{13}{2}y=-\frac{73}{2}
समीकरणाच्या दोन्ही बाजूंमधून \frac{85}{2} वजा करा.
y=\frac{73}{13}
समीकरणाच्या दोन्ही बाजूंना -\frac{13}{2} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=-\frac{5}{2}\times \frac{73}{13}+\frac{17}{2}
x=-\frac{5}{2}y+\frac{17}{2} मध्ये y साठी \frac{73}{13} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-\frac{365}{26}+\frac{17}{2}
अंशाला अंशांच्या संख्येने आणि विभाजकाला विभाजकांच्या संख्येने गुणाकार करून \frac{73}{13} चा -\frac{5}{2} वेळा गुणाकार करा. नंतर शक्य तितक्या कमी टर्म्सपर्यंत अंश कमी करा.
x=-\frac{72}{13}
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{17}{2} ते -\frac{365}{26} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=-\frac{72}{13},y=\frac{73}{13}
सिस्टम आता सोडवली आहे.
6y+5x=6
दुसर्या समीकरणाचा विचार करा. दोन्ही बाजूंना 5x जोडा.
2x+5y=17,5x+6y=6
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}2&5\\5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\6\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}2&5\\5&6\end{matrix}\right))\left(\begin{matrix}2&5\\5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\5&6\end{matrix}\right))\left(\begin{matrix}17\\6\end{matrix}\right)
समीकरणाला \left(\begin{matrix}2&5\\5&6\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\5&6\end{matrix}\right))\left(\begin{matrix}17\\6\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\5&6\end{matrix}\right))\left(\begin{matrix}17\\6\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{2\times 6-5\times 5}&-\frac{5}{2\times 6-5\times 5}\\-\frac{5}{2\times 6-5\times 5}&\frac{2}{2\times 6-5\times 5}\end{matrix}\right)\left(\begin{matrix}17\\6\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{13}&\frac{5}{13}\\\frac{5}{13}&-\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}17\\6\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{13}\times 17+\frac{5}{13}\times 6\\\frac{5}{13}\times 17-\frac{2}{13}\times 6\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{72}{13}\\\frac{73}{13}\end{matrix}\right)
अंकगणित करा.
x=-\frac{72}{13},y=\frac{73}{13}
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
6y+5x=6
दुसर्या समीकरणाचा विचार करा. दोन्ही बाजूंना 5x जोडा.
2x+5y=17,5x+6y=6
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
5\times 2x+5\times 5y=5\times 17,2\times 5x+2\times 6y=2\times 6
2x आणि 5x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 5 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने गुणाकार करा.
10x+25y=85,10x+12y=12
सरलीकृत करा.
10x-10x+25y-12y=85-12
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 10x+25y=85 मधून 10x+12y=12 वजा करा.
25y-12y=85-12
10x ते -10x जोडा. 10x आणि -10x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
13y=85-12
25y ते -12y जोडा.
13y=73
85 ते -12 जोडा.
y=\frac{73}{13}
दोन्ही बाजूंना 13 ने विभागा.
5x+6\times \frac{73}{13}=6
5x+6y=6 मध्ये y साठी \frac{73}{13} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
5x+\frac{438}{13}=6
\frac{73}{13} ला 6 वेळा गुणाकार करा.
5x=-\frac{360}{13}
समीकरणाच्या दोन्ही बाजूंमधून \frac{438}{13} वजा करा.
x=-\frac{72}{13}
दोन्ही बाजूंना 5 ने विभागा.
x=-\frac{72}{13},y=\frac{73}{13}
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}