मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

2x+3y=6,6x+5y=9
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
2x+3y=6
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
2x=-3y+6
समीकरणाच्या दोन्ही बाजूंमधून 3y वजा करा.
x=\frac{1}{2}\left(-3y+6\right)
दोन्ही बाजूंना 2 ने विभागा.
x=-\frac{3}{2}y+3
-3y+6 ला \frac{1}{2} वेळा गुणाकार करा.
6\left(-\frac{3}{2}y+3\right)+5y=9
इतर समीकरणामध्ये x साठी -\frac{3y}{2}+3 चा विकल्प वापरा, 6x+5y=9.
-9y+18+5y=9
-\frac{3y}{2}+3 ला 6 वेळा गुणाकार करा.
-4y+18=9
-9y ते 5y जोडा.
-4y=-9
समीकरणाच्या दोन्ही बाजूंमधून 18 वजा करा.
y=\frac{9}{4}
दोन्ही बाजूंना -4 ने विभागा.
x=-\frac{3}{2}\times \frac{9}{4}+3
x=-\frac{3}{2}y+3 मध्ये y साठी \frac{9}{4} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-\frac{27}{8}+3
अंशाला अंशांच्या संख्येने आणि विभाजकाला विभाजकांच्या संख्येने गुणाकार करून \frac{9}{4} चा -\frac{3}{2} वेळा गुणाकार करा. नंतर शक्य तितक्या कमी टर्म्सपर्यंत अंश कमी करा.
x=-\frac{3}{8}
3 ते -\frac{27}{8} जोडा.
x=-\frac{3}{8},y=\frac{9}{4}
सिस्टम आता सोडवली आहे.
2x+3y=6,6x+5y=9
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}2&3\\6&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\9\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}2&3\\6&5\end{matrix}\right))\left(\begin{matrix}2&3\\6&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&5\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
समीकरणाला \left(\begin{matrix}2&3\\6&5\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&5\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&5\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-3\times 6}&-\frac{3}{2\times 5-3\times 6}\\-\frac{6}{2\times 5-3\times 6}&\frac{2}{2\times 5-3\times 6}\end{matrix}\right)\left(\begin{matrix}6\\9\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{8}&\frac{3}{8}\\\frac{3}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}6\\9\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{8}\times 6+\frac{3}{8}\times 9\\\frac{3}{4}\times 6-\frac{1}{4}\times 9\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{8}\\\frac{9}{4}\end{matrix}\right)
अंकगणित करा.
x=-\frac{3}{8},y=\frac{9}{4}
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
2x+3y=6,6x+5y=9
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
6\times 2x+6\times 3y=6\times 6,2\times 6x+2\times 5y=2\times 9
2x आणि 6x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 6 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने गुणाकार करा.
12x+18y=36,12x+10y=18
सरलीकृत करा.
12x-12x+18y-10y=36-18
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 12x+18y=36 मधून 12x+10y=18 वजा करा.
18y-10y=36-18
12x ते -12x जोडा. 12x आणि -12x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
8y=36-18
18y ते -10y जोडा.
8y=18
36 ते -18 जोडा.
y=\frac{9}{4}
दोन्ही बाजूंना 8 ने विभागा.
6x+5\times \frac{9}{4}=9
6x+5y=9 मध्ये y साठी \frac{9}{4} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
6x+\frac{45}{4}=9
\frac{9}{4} ला 5 वेळा गुणाकार करा.
6x=-\frac{9}{4}
समीकरणाच्या दोन्ही बाजूंमधून \frac{45}{4} वजा करा.
x=-\frac{3}{8}
दोन्ही बाजूंना 6 ने विभागा.
x=-\frac{3}{8},y=\frac{9}{4}
सिस्टम आता सोडवली आहे.