मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

2x+3y=5,4x+3y=7
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
2x+3y=5
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
2x=-3y+5
समीकरणाच्या दोन्ही बाजूंमधून 3y वजा करा.
x=\frac{1}{2}\left(-3y+5\right)
दोन्ही बाजूंना 2 ने विभागा.
x=-\frac{3}{2}y+\frac{5}{2}
-3y+5 ला \frac{1}{2} वेळा गुणाकार करा.
4\left(-\frac{3}{2}y+\frac{5}{2}\right)+3y=7
इतर समीकरणामध्ये x साठी \frac{-3y+5}{2} चा विकल्प वापरा, 4x+3y=7.
-6y+10+3y=7
\frac{-3y+5}{2} ला 4 वेळा गुणाकार करा.
-3y+10=7
-6y ते 3y जोडा.
-3y=-3
समीकरणाच्या दोन्ही बाजूंमधून 10 वजा करा.
y=1
दोन्ही बाजूंना -3 ने विभागा.
x=\frac{-3+5}{2}
x=-\frac{3}{2}y+\frac{5}{2} मध्ये y साठी 1 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=1
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{5}{2} ते -\frac{3}{2} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=1,y=1
सिस्टम आता सोडवली आहे.
2x+3y=5,4x+3y=7
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}2&3\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}2&3\\4&3\end{matrix}\right))\left(\begin{matrix}2&3\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&3\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
समीकरणाला \left(\begin{matrix}2&3\\4&3\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&3\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&3\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-3\times 4}&-\frac{3}{2\times 3-3\times 4}\\-\frac{4}{2\times 3-3\times 4}&\frac{2}{2\times 3-3\times 4}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 5+\frac{1}{2}\times 7\\\frac{2}{3}\times 5-\frac{1}{3}\times 7\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
अंकगणित करा.
x=1,y=1
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
2x+3y=5,4x+3y=7
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
2x-4x+3y-3y=5-7
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 2x+3y=5 मधून 4x+3y=7 वजा करा.
2x-4x=5-7
3y ते -3y जोडा. 3y आणि -3y रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-2x=5-7
2x ते -4x जोडा.
-2x=-2
5 ते -7 जोडा.
x=1
दोन्ही बाजूंना -2 ने विभागा.
4+3y=7
4x+3y=7 मध्ये x साठी 1 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण y साठी थेट सोडवू शकता.
3y=3
समीकरणाच्या दोन्ही बाजूंमधून 4 वजा करा.
y=1
दोन्ही बाजूंना 3 ने विभागा.
x=1,y=1
सिस्टम आता सोडवली आहे.