x, y साठी सोडवा
x = \frac{16}{5} = 3\frac{1}{5} = 3.2
y = -\frac{6}{5} = -1\frac{1}{5} = -1.2
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
2x+2y=4,3x-2y=12
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
2x+2y=4
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
2x=-2y+4
समीकरणाच्या दोन्ही बाजूंमधून 2y वजा करा.
x=\frac{1}{2}\left(-2y+4\right)
दोन्ही बाजूंना 2 ने विभागा.
x=-y+2
-2y+4 ला \frac{1}{2} वेळा गुणाकार करा.
3\left(-y+2\right)-2y=12
इतर समीकरणामध्ये x साठी -y+2 चा विकल्प वापरा, 3x-2y=12.
-3y+6-2y=12
-y+2 ला 3 वेळा गुणाकार करा.
-5y+6=12
-3y ते -2y जोडा.
-5y=6
समीकरणाच्या दोन्ही बाजूंमधून 6 वजा करा.
y=-\frac{6}{5}
दोन्ही बाजूंना -5 ने विभागा.
x=-\left(-\frac{6}{5}\right)+2
x=-y+2 मध्ये y साठी -\frac{6}{5} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{6}{5}+2
-\frac{6}{5} ला -1 वेळा गुणाकार करा.
x=\frac{16}{5}
2 ते \frac{6}{5} जोडा.
x=\frac{16}{5},y=-\frac{6}{5}
सिस्टम आता सोडवली आहे.
2x+2y=4,3x-2y=12
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}2&2\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\12\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}2&2\\3&-2\end{matrix}\right))\left(\begin{matrix}2&2\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\3&-2\end{matrix}\right))\left(\begin{matrix}4\\12\end{matrix}\right)
समीकरणाला \left(\begin{matrix}2&2\\3&-2\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\3&-2\end{matrix}\right))\left(\begin{matrix}4\\12\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\3&-2\end{matrix}\right))\left(\begin{matrix}4\\12\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-2\times 3}&-\frac{2}{2\left(-2\right)-2\times 3}\\-\frac{3}{2\left(-2\right)-2\times 3}&\frac{2}{2\left(-2\right)-2\times 3}\end{matrix}\right)\left(\begin{matrix}4\\12\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\\frac{3}{10}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}4\\12\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 4+\frac{1}{5}\times 12\\\frac{3}{10}\times 4-\frac{1}{5}\times 12\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{5}\\-\frac{6}{5}\end{matrix}\right)
अंकगणित करा.
x=\frac{16}{5},y=-\frac{6}{5}
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
2x+2y=4,3x-2y=12
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
3\times 2x+3\times 2y=3\times 4,2\times 3x+2\left(-2\right)y=2\times 12
2x आणि 3x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने गुणाकार करा.
6x+6y=12,6x-4y=24
सरलीकृत करा.
6x-6x+6y+4y=12-24
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 6x+6y=12 मधून 6x-4y=24 वजा करा.
6y+4y=12-24
6x ते -6x जोडा. 6x आणि -6x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
10y=12-24
6y ते 4y जोडा.
10y=-12
12 ते -24 जोडा.
y=-\frac{6}{5}
दोन्ही बाजूंना 10 ने विभागा.
3x-2\left(-\frac{6}{5}\right)=12
3x-2y=12 मध्ये y साठी -\frac{6}{5} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
3x+\frac{12}{5}=12
-\frac{6}{5} ला -2 वेळा गुणाकार करा.
3x=\frac{48}{5}
समीकरणाच्या दोन्ही बाजूंमधून \frac{12}{5} वजा करा.
x=\frac{16}{5}
दोन्ही बाजूंना 3 ने विभागा.
x=\frac{16}{5},y=-\frac{6}{5}
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}