x, y साठी सोडवा
x=1
y=3
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
-8x+7y=13,7x-9y=-20
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
-8x+7y=13
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
-8x=-7y+13
समीकरणाच्या दोन्ही बाजूंमधून 7y वजा करा.
x=-\frac{1}{8}\left(-7y+13\right)
दोन्ही बाजूंना -8 ने विभागा.
x=\frac{7}{8}y-\frac{13}{8}
-7y+13 ला -\frac{1}{8} वेळा गुणाकार करा.
7\left(\frac{7}{8}y-\frac{13}{8}\right)-9y=-20
इतर समीकरणामध्ये x साठी \frac{7y-13}{8} चा विकल्प वापरा, 7x-9y=-20.
\frac{49}{8}y-\frac{91}{8}-9y=-20
\frac{7y-13}{8} ला 7 वेळा गुणाकार करा.
-\frac{23}{8}y-\frac{91}{8}=-20
\frac{49y}{8} ते -9y जोडा.
-\frac{23}{8}y=-\frac{69}{8}
समीकरणाच्या दोन्ही बाजूस \frac{91}{8} जोडा.
y=3
समीकरणाच्या दोन्ही बाजूंना -\frac{23}{8} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=\frac{7}{8}\times 3-\frac{13}{8}
x=\frac{7}{8}y-\frac{13}{8} मध्ये y साठी 3 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{21-13}{8}
3 ला \frac{7}{8} वेळा गुणाकार करा.
x=1
सामायिक विभाजक शोधून आणि अंशे जोडून -\frac{13}{8} ते \frac{21}{8} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=1,y=3
सिस्टम आता सोडवली आहे.
-8x+7y=13,7x-9y=-20
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}-8&7\\7&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-20\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}-8&7\\7&-9\end{matrix}\right))\left(\begin{matrix}-8&7\\7&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&7\\7&-9\end{matrix}\right))\left(\begin{matrix}13\\-20\end{matrix}\right)
समीकरणाला \left(\begin{matrix}-8&7\\7&-9\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&7\\7&-9\end{matrix}\right))\left(\begin{matrix}13\\-20\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&7\\7&-9\end{matrix}\right))\left(\begin{matrix}13\\-20\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{-8\left(-9\right)-7\times 7}&-\frac{7}{-8\left(-9\right)-7\times 7}\\-\frac{7}{-8\left(-9\right)-7\times 7}&-\frac{8}{-8\left(-9\right)-7\times 7}\end{matrix}\right)\left(\begin{matrix}13\\-20\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{23}&-\frac{7}{23}\\-\frac{7}{23}&-\frac{8}{23}\end{matrix}\right)\left(\begin{matrix}13\\-20\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{23}\times 13-\frac{7}{23}\left(-20\right)\\-\frac{7}{23}\times 13-\frac{8}{23}\left(-20\right)\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
अंकगणित करा.
x=1,y=3
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
-8x+7y=13,7x-9y=-20
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
7\left(-8\right)x+7\times 7y=7\times 13,-8\times 7x-8\left(-9\right)y=-8\left(-20\right)
-8x आणि 7x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 7 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना -8 ने गुणाकार करा.
-56x+49y=91,-56x+72y=160
सरलीकृत करा.
-56x+56x+49y-72y=91-160
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून -56x+49y=91 मधून -56x+72y=160 वजा करा.
49y-72y=91-160
-56x ते 56x जोडा. -56x आणि 56x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-23y=91-160
49y ते -72y जोडा.
-23y=-69
91 ते -160 जोडा.
y=3
दोन्ही बाजूंना -23 ने विभागा.
7x-9\times 3=-20
7x-9y=-20 मध्ये y साठी 3 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
7x-27=-20
3 ला -9 वेळा गुणाकार करा.
7x=7
समीकरणाच्या दोन्ही बाजूस 27 जोडा.
x=1
दोन्ही बाजूंना 7 ने विभागा.
x=1,y=3
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}