x, y साठी सोडवा
x=0
y=-3
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
-3x-2y=6,3x+3y=-9
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
-3x-2y=6
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
-3x=2y+6
समीकरणाच्या दोन्ही बाजूस 2y जोडा.
x=-\frac{1}{3}\left(2y+6\right)
दोन्ही बाजूंना -3 ने विभागा.
x=-\frac{2}{3}y-2
6+2y ला -\frac{1}{3} वेळा गुणाकार करा.
3\left(-\frac{2}{3}y-2\right)+3y=-9
इतर समीकरणामध्ये x साठी -\frac{2y}{3}-2 चा विकल्प वापरा, 3x+3y=-9.
-2y-6+3y=-9
-\frac{2y}{3}-2 ला 3 वेळा गुणाकार करा.
y-6=-9
-2y ते 3y जोडा.
y=-3
समीकरणाच्या दोन्ही बाजूस 6 जोडा.
x=-\frac{2}{3}\left(-3\right)-2
x=-\frac{2}{3}y-2 मध्ये y साठी -3 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=2-2
-3 ला -\frac{2}{3} वेळा गुणाकार करा.
x=0
-2 ते 2 जोडा.
x=0,y=-3
सिस्टम आता सोडवली आहे.
-3x-2y=6,3x+3y=-9
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-9\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right))\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right))\left(\begin{matrix}6\\-9\end{matrix}\right)
समीकरणाला \left(\begin{matrix}-3&-2\\3&3\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right))\left(\begin{matrix}6\\-9\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&-2\\3&3\end{matrix}\right))\left(\begin{matrix}6\\-9\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-3\times 3-\left(-2\times 3\right)}&-\frac{-2}{-3\times 3-\left(-2\times 3\right)}\\-\frac{3}{-3\times 3-\left(-2\times 3\right)}&-\frac{3}{-3\times 3-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}6\\-9\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-\frac{2}{3}\\1&1\end{matrix}\right)\left(\begin{matrix}6\\-9\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6-\frac{2}{3}\left(-9\right)\\6-9\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-3\end{matrix}\right)
अंकगणित करा.
x=0,y=-3
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
-3x-2y=6,3x+3y=-9
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
3\left(-3\right)x+3\left(-2\right)y=3\times 6,-3\times 3x-3\times 3y=-3\left(-9\right)
-3x आणि 3x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना -3 ने गुणाकार करा.
-9x-6y=18,-9x-9y=27
सरलीकृत करा.
-9x+9x-6y+9y=18-27
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून -9x-6y=18 मधून -9x-9y=27 वजा करा.
-6y+9y=18-27
-9x ते 9x जोडा. -9x आणि 9x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
3y=18-27
-6y ते 9y जोडा.
3y=-9
18 ते -27 जोडा.
y=-3
दोन्ही बाजूंना 3 ने विभागा.
3x+3\left(-3\right)=-9
3x+3y=-9 मध्ये y साठी -3 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
3x-9=-9
-3 ला 3 वेळा गुणाकार करा.
3x=0
समीकरणाच्या दोन्ही बाजूस 9 जोडा.
x=0
दोन्ही बाजूंना 3 ने विभागा.
x=0,y=-3
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}