मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

-2x-6y=-26,5x+2y=13
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
-2x-6y=-26
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
-2x=6y-26
समीकरणाच्या दोन्ही बाजूस 6y जोडा.
x=-\frac{1}{2}\left(6y-26\right)
दोन्ही बाजूंना -2 ने विभागा.
x=-3y+13
6y-26 ला -\frac{1}{2} वेळा गुणाकार करा.
5\left(-3y+13\right)+2y=13
इतर समीकरणामध्ये x साठी -3y+13 चा विकल्प वापरा, 5x+2y=13.
-15y+65+2y=13
-3y+13 ला 5 वेळा गुणाकार करा.
-13y+65=13
-15y ते 2y जोडा.
-13y=-52
समीकरणाच्या दोन्ही बाजूंमधून 65 वजा करा.
y=4
दोन्ही बाजूंना -13 ने विभागा.
x=-3\times 4+13
x=-3y+13 मध्ये y साठी 4 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-12+13
4 ला -3 वेळा गुणाकार करा.
x=1
13 ते -12 जोडा.
x=1,y=4
सिस्टम आता सोडवली आहे.
-2x-6y=-26,5x+2y=13
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-26\\13\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right))\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right))\left(\begin{matrix}-26\\13\end{matrix}\right)
समीकरणाला \left(\begin{matrix}-2&-6\\5&2\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right))\left(\begin{matrix}-26\\13\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-6\\5&2\end{matrix}\right))\left(\begin{matrix}-26\\13\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-2\times 2-\left(-6\times 5\right)}&-\frac{-6}{-2\times 2-\left(-6\times 5\right)}\\-\frac{5}{-2\times 2-\left(-6\times 5\right)}&-\frac{2}{-2\times 2-\left(-6\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-26\\13\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}&\frac{3}{13}\\-\frac{5}{26}&-\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}-26\\13\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}\left(-26\right)+\frac{3}{13}\times 13\\-\frac{5}{26}\left(-26\right)-\frac{1}{13}\times 13\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
अंकगणित करा.
x=1,y=4
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
-2x-6y=-26,5x+2y=13
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
5\left(-2\right)x+5\left(-6\right)y=5\left(-26\right),-2\times 5x-2\times 2y=-2\times 13
-2x आणि 5x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 5 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना -2 ने गुणाकार करा.
-10x-30y=-130,-10x-4y=-26
सरलीकृत करा.
-10x+10x-30y+4y=-130+26
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून -10x-30y=-130 मधून -10x-4y=-26 वजा करा.
-30y+4y=-130+26
-10x ते 10x जोडा. -10x आणि 10x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-26y=-130+26
-30y ते 4y जोडा.
-26y=-104
-130 ते 26 जोडा.
y=4
दोन्ही बाजूंना -26 ने विभागा.
5x+2\times 4=13
5x+2y=13 मध्ये y साठी 4 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
5x+8=13
4 ला 2 वेळा गुणाकार करा.
5x=5
समीकरणाच्या दोन्ही बाजूंमधून 8 वजा करा.
x=1
दोन्ही बाजूंना 5 ने विभागा.
x=1,y=4
सिस्टम आता सोडवली आहे.