मुख्य सामग्री वगळा
y, x साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

y-2x=-3
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून 2x वजा करा.
-x+y=-3
दुसर्‍या समीकरणाचा विचार करा. -1 मिळविण्यासाठी 2 ला -2 ने भागाकार करा.
y-2x=-3,y-x=-3
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
y-2x=-3
समान चिन्हाच्या डाव्या बाजूला y विलग करून, y साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
y=2x-3
समीकरणाच्या दोन्ही बाजूस 2x जोडा.
2x-3-x=-3
इतर समीकरणामध्ये y साठी 2x-3 चा विकल्प वापरा, y-x=-3.
x-3=-3
2x ते -x जोडा.
x=0
समीकरणाच्या दोन्ही बाजूस 3 जोडा.
y=-3
y=2x-3 मध्ये x साठी 0 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण y साठी थेट सोडवू शकता.
y=-3,x=0
सिस्टम आता सोडवली आहे.
y-2x=-3
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून 2x वजा करा.
-x+y=-3
दुसर्‍या समीकरणाचा विचार करा. -1 मिळविण्यासाठी 2 ला -2 ने भागाकार करा.
y-2x=-3,y-x=-3
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\-3\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}-3\\-3\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&-2\\1&-1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}-3\\-3\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}-3\\-3\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-2\right)}&-\frac{-2}{-1-\left(-2\right)}\\-\frac{1}{-1-\left(-2\right)}&\frac{1}{-1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-3\\-3\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1&2\\-1&1\end{matrix}\right)\left(\begin{matrix}-3\\-3\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\left(-3\right)+2\left(-3\right)\\-\left(-3\right)-3\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\0\end{matrix}\right)
अंकगणित करा.
y=-3,x=0
मॅट्रिक्सचे y आणि x घटक बाहेर काढा.
y-2x=-3
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून 2x वजा करा.
-x+y=-3
दुसर्‍या समीकरणाचा विचार करा. -1 मिळविण्यासाठी 2 ला -2 ने भागाकार करा.
y-2x=-3,y-x=-3
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
y-y-2x+x=-3+3
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून y-2x=-3 मधून y-x=-3 वजा करा.
-2x+x=-3+3
y ते -y जोडा. y आणि -y रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-x=-3+3
-2x ते x जोडा.
-x=0
-3 ते 3 जोडा.
x=0
दोन्ही बाजूंना -1 ने विभागा.
y=-3
y-x=-3 मध्ये x साठी 0 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण y साठी थेट सोडवू शकता.
y=-3,x=0
सिस्टम आता सोडवली आहे.