x, y साठी सोडवा
x=15
y=6
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
\frac{1}{3}x+\frac{1}{2}y=8,\frac{1}{5}x+\frac{1}{6}y=4
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
\frac{1}{3}x+\frac{1}{2}y=8
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
\frac{1}{3}x=-\frac{1}{2}y+8
समीकरणाच्या दोन्ही बाजूंमधून \frac{y}{2} वजा करा.
x=3\left(-\frac{1}{2}y+8\right)
दोन्ही बाजूंना 3 ने गुणाकार करा.
x=-\frac{3}{2}y+24
-\frac{y}{2}+8 ला 3 वेळा गुणाकार करा.
\frac{1}{5}\left(-\frac{3}{2}y+24\right)+\frac{1}{6}y=4
इतर समीकरणामध्ये x साठी -\frac{3y}{2}+24 चा विकल्प वापरा, \frac{1}{5}x+\frac{1}{6}y=4.
-\frac{3}{10}y+\frac{24}{5}+\frac{1}{6}y=4
-\frac{3y}{2}+24 ला \frac{1}{5} वेळा गुणाकार करा.
-\frac{2}{15}y+\frac{24}{5}=4
-\frac{3y}{10} ते \frac{y}{6} जोडा.
-\frac{2}{15}y=-\frac{4}{5}
समीकरणाच्या दोन्ही बाजूंमधून \frac{24}{5} वजा करा.
y=6
समीकरणाच्या दोन्ही बाजूंना -\frac{2}{15} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=-\frac{3}{2}\times 6+24
x=-\frac{3}{2}y+24 मध्ये y साठी 6 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-9+24
6 ला -\frac{3}{2} वेळा गुणाकार करा.
x=15
24 ते -9 जोडा.
x=15,y=6
सिस्टम आता सोडवली आहे.
\frac{1}{3}x+\frac{1}{2}y=8,\frac{1}{5}x+\frac{1}{6}y=4
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{5}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\4\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{5}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{5}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{5}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}8\\4\end{matrix}\right)
समीकरणाला \left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{5}&\frac{1}{6}\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{5}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}8\\4\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{2}\\\frac{1}{5}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}8\\4\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{6}}{\frac{1}{3}\times \frac{1}{6}-\frac{1}{2}\times \frac{1}{5}}&-\frac{\frac{1}{2}}{\frac{1}{3}\times \frac{1}{6}-\frac{1}{2}\times \frac{1}{5}}\\-\frac{\frac{1}{5}}{\frac{1}{3}\times \frac{1}{6}-\frac{1}{2}\times \frac{1}{5}}&\frac{\frac{1}{3}}{\frac{1}{3}\times \frac{1}{6}-\frac{1}{2}\times \frac{1}{5}}\end{matrix}\right)\left(\begin{matrix}8\\4\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{4}&\frac{45}{4}\\\frac{9}{2}&-\frac{15}{2}\end{matrix}\right)\left(\begin{matrix}8\\4\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{4}\times 8+\frac{45}{4}\times 4\\\frac{9}{2}\times 8-\frac{15}{2}\times 4\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\6\end{matrix}\right)
अंकगणित करा.
x=15,y=6
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
\frac{1}{3}x+\frac{1}{2}y=8,\frac{1}{5}x+\frac{1}{6}y=4
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
\frac{1}{5}\times \frac{1}{3}x+\frac{1}{5}\times \frac{1}{2}y=\frac{1}{5}\times 8,\frac{1}{3}\times \frac{1}{5}x+\frac{1}{3}\times \frac{1}{6}y=\frac{1}{3}\times 4
\frac{x}{3} आणि \frac{x}{5} समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना \frac{1}{5} ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना \frac{1}{3} ने गुणाकार करा.
\frac{1}{15}x+\frac{1}{10}y=\frac{8}{5},\frac{1}{15}x+\frac{1}{18}y=\frac{4}{3}
सरलीकृत करा.
\frac{1}{15}x-\frac{1}{15}x+\frac{1}{10}y-\frac{1}{18}y=\frac{8}{5}-\frac{4}{3}
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून \frac{1}{15}x+\frac{1}{10}y=\frac{8}{5} मधून \frac{1}{15}x+\frac{1}{18}y=\frac{4}{3} वजा करा.
\frac{1}{10}y-\frac{1}{18}y=\frac{8}{5}-\frac{4}{3}
\frac{x}{15} ते -\frac{x}{15} जोडा. \frac{x}{15} आणि -\frac{x}{15} रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
\frac{2}{45}y=\frac{8}{5}-\frac{4}{3}
\frac{y}{10} ते -\frac{y}{18} जोडा.
\frac{2}{45}y=\frac{4}{15}
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{8}{5} ते -\frac{4}{3} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
y=6
समीकरणाच्या दोन्ही बाजूंना \frac{2}{45} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
\frac{1}{5}x+\frac{1}{6}\times 6=4
\frac{1}{5}x+\frac{1}{6}y=4 मध्ये y साठी 6 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
\frac{1}{5}x+1=4
6 ला \frac{1}{6} वेळा गुणाकार करा.
\frac{1}{5}x=3
समीकरणाच्या दोन्ही बाजूंमधून 1 वजा करा.
x=15
दोन्ही बाजूंना 5 ने गुणाकार करा.
x=15,y=6
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}