x, y साठी सोडवा
x=5
y=-11
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
3x+y=2\times 2
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंना 2 ने गुणाकार करा.
3x+y=4
4 मिळविण्यासाठी 2 आणि 2 चा गुणाकार करा.
y+1=-2x
दुसर्या समीकरणाचा विचार करा. शून्याने भागाकार करणे परिभाषित नसल्याने चल x हे 0 च्या समान असता कामा नये. समीकरणाच्या दोन्ही बाजूंना x ने गुणाकार करा.
y+1+2x=0
दोन्ही बाजूंना 2x जोडा.
y+2x=-1
दोन्ही बाजूंकडून 1 वजा करा. कोणत्याही संख्येला शून्यातून वजा केल्यास ऋण संख्या मिळते.
3x+y=4,2x+y=-1
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
3x+y=4
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
3x=-y+4
समीकरणाच्या दोन्ही बाजूंमधून y वजा करा.
x=\frac{1}{3}\left(-y+4\right)
दोन्ही बाजूंना 3 ने विभागा.
x=-\frac{1}{3}y+\frac{4}{3}
-y+4 ला \frac{1}{3} वेळा गुणाकार करा.
2\left(-\frac{1}{3}y+\frac{4}{3}\right)+y=-1
इतर समीकरणामध्ये x साठी \frac{4-y}{3} चा विकल्प वापरा, 2x+y=-1.
-\frac{2}{3}y+\frac{8}{3}+y=-1
\frac{4-y}{3} ला 2 वेळा गुणाकार करा.
\frac{1}{3}y+\frac{8}{3}=-1
-\frac{2y}{3} ते y जोडा.
\frac{1}{3}y=-\frac{11}{3}
समीकरणाच्या दोन्ही बाजूंमधून \frac{8}{3} वजा करा.
y=-11
दोन्ही बाजूंना 3 ने गुणाकार करा.
x=-\frac{1}{3}\left(-11\right)+\frac{4}{3}
x=-\frac{1}{3}y+\frac{4}{3} मध्ये y साठी -11 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{11+4}{3}
-11 ला -\frac{1}{3} वेळा गुणाकार करा.
x=5
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{4}{3} ते \frac{11}{3} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=5,y=-11
सिस्टम आता सोडवली आहे.
3x+y=2\times 2
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंना 2 ने गुणाकार करा.
3x+y=4
4 मिळविण्यासाठी 2 आणि 2 चा गुणाकार करा.
y+1=-2x
दुसर्या समीकरणाचा विचार करा. शून्याने भागाकार करणे परिभाषित नसल्याने चल x हे 0 च्या समान असता कामा नये. समीकरणाच्या दोन्ही बाजूंना x ने गुणाकार करा.
y+1+2x=0
दोन्ही बाजूंना 2x जोडा.
y+2x=-1
दोन्ही बाजूंकडून 1 वजा करा. कोणत्याही संख्येला शून्यातून वजा केल्यास ऋण संख्या मिळते.
3x+y=4,2x+y=-1
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}3&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-1\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}3&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}4\\-1\end{matrix}\right)
समीकरणाला \left(\begin{matrix}3&1\\2&1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}4\\-1\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}4\\-1\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-2}&-\frac{1}{3-2}\\-\frac{2}{3-2}&\frac{3}{3-2}\end{matrix}\right)\left(\begin{matrix}4\\-1\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-2&3\end{matrix}\right)\left(\begin{matrix}4\\-1\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4-\left(-1\right)\\-2\times 4+3\left(-1\right)\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-11\end{matrix}\right)
अंकगणित करा.
x=5,y=-11
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
3x+y=2\times 2
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंना 2 ने गुणाकार करा.
3x+y=4
4 मिळविण्यासाठी 2 आणि 2 चा गुणाकार करा.
y+1=-2x
दुसर्या समीकरणाचा विचार करा. शून्याने भागाकार करणे परिभाषित नसल्याने चल x हे 0 च्या समान असता कामा नये. समीकरणाच्या दोन्ही बाजूंना x ने गुणाकार करा.
y+1+2x=0
दोन्ही बाजूंना 2x जोडा.
y+2x=-1
दोन्ही बाजूंकडून 1 वजा करा. कोणत्याही संख्येला शून्यातून वजा केल्यास ऋण संख्या मिळते.
3x+y=4,2x+y=-1
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
3x-2x+y-y=4+1
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 3x+y=4 मधून 2x+y=-1 वजा करा.
3x-2x=4+1
y ते -y जोडा. y आणि -y रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
x=4+1
3x ते -2x जोडा.
x=5
4 ते 1 जोडा.
2\times 5+y=-1
2x+y=-1 मध्ये x साठी 5 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण y साठी थेट सोडवू शकता.
10+y=-1
5 ला 2 वेळा गुणाकार करा.
y=-11
समीकरणाच्या दोन्ही बाजूंमधून 10 वजा करा.
x=5,y=-11
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}