x, y साठी सोडवा
x=4
y=-2
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
x-y=6
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून y वजा करा.
4y+2x=0
दुसर्या समीकरणाचा विचार करा. दोन्ही बाजूंना 2x जोडा.
x-y=6,2x+4y=0
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
x-y=6
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
x=y+6
समीकरणाच्या दोन्ही बाजूस y जोडा.
2\left(y+6\right)+4y=0
इतर समीकरणामध्ये x साठी y+6 चा विकल्प वापरा, 2x+4y=0.
2y+12+4y=0
y+6 ला 2 वेळा गुणाकार करा.
6y+12=0
2y ते 4y जोडा.
6y=-12
समीकरणाच्या दोन्ही बाजूंमधून 12 वजा करा.
y=-2
दोन्ही बाजूंना 6 ने विभागा.
x=-2+6
x=y+6 मध्ये y साठी -2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=4
6 ते -2 जोडा.
x=4,y=-2
सिस्टम आता सोडवली आहे.
x-y=6
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून y वजा करा.
4y+2x=0
दुसर्या समीकरणाचा विचार करा. दोन्ही बाजूंना 2x जोडा.
x-y=6,2x+4y=0
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&-1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\0\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&-1\\2&4\end{matrix}\right))\left(\begin{matrix}1&-1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&4\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&-1\\2&4\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&4\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&4\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-2\right)}&-\frac{-1}{4-\left(-2\right)}\\-\frac{2}{4-\left(-2\right)}&\frac{1}{4-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}6\\0\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{6}\\-\frac{1}{3}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}6\\0\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 6\\-\frac{1}{3}\times 6\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-2\end{matrix}\right)
अंकगणित करा.
x=4,y=-2
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
x-y=6
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून y वजा करा.
4y+2x=0
दुसर्या समीकरणाचा विचार करा. दोन्ही बाजूंना 2x जोडा.
x-y=6,2x+4y=0
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
2x+2\left(-1\right)y=2\times 6,2x+4y=0
x आणि 2x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 1 ने गुणाकार करा.
2x-2y=12,2x+4y=0
सरलीकृत करा.
2x-2x-2y-4y=12
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 2x-2y=12 मधून 2x+4y=0 वजा करा.
-2y-4y=12
2x ते -2x जोडा. 2x आणि -2x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-6y=12
-2y ते -4y जोडा.
y=-2
दोन्ही बाजूंना -6 ने विभागा.
2x+4\left(-2\right)=0
2x+4y=0 मध्ये y साठी -2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
2x-8=0
-2 ला 4 वेळा गुणाकार करा.
2x=8
समीकरणाच्या दोन्ही बाजूस 8 जोडा.
x=4
दोन्ही बाजूंना 2 ने विभागा.
x=4,y=-2
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}