मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

2x+9y=-7,6x-3y=9
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
2x+9y=-7
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
2x=-9y-7
समीकरणाच्या दोन्ही बाजूंमधून 9y वजा करा.
x=\frac{1}{2}\left(-9y-7\right)
दोन्ही बाजूंना 2 ने विभागा.
x=-\frac{9}{2}y-\frac{7}{2}
-9y-7 ला \frac{1}{2} वेळा गुणाकार करा.
6\left(-\frac{9}{2}y-\frac{7}{2}\right)-3y=9
इतर समीकरणामध्ये x साठी \frac{-9y-7}{2} चा विकल्प वापरा, 6x-3y=9.
-27y-21-3y=9
\frac{-9y-7}{2} ला 6 वेळा गुणाकार करा.
-30y-21=9
-27y ते -3y जोडा.
-30y=30
समीकरणाच्या दोन्ही बाजूस 21 जोडा.
y=-1
दोन्ही बाजूंना -30 ने विभागा.
x=-\frac{9}{2}\left(-1\right)-\frac{7}{2}
x=-\frac{9}{2}y-\frac{7}{2} मध्ये y साठी -1 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{9-7}{2}
-1 ला -\frac{9}{2} वेळा गुणाकार करा.
x=1
सामायिक विभाजक शोधून आणि अंशे जोडून -\frac{7}{2} ते \frac{9}{2} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=1,y=-1
सिस्टम आता सोडवली आहे.
2x+9y=-7,6x-3y=9
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}2&9\\6&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\9\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}2&9\\6&-3\end{matrix}\right))\left(\begin{matrix}2&9\\6&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&9\\6&-3\end{matrix}\right))\left(\begin{matrix}-7\\9\end{matrix}\right)
समीकरणाला \left(\begin{matrix}2&9\\6&-3\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&9\\6&-3\end{matrix}\right))\left(\begin{matrix}-7\\9\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&9\\6&-3\end{matrix}\right))\left(\begin{matrix}-7\\9\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-9\times 6}&-\frac{9}{2\left(-3\right)-9\times 6}\\-\frac{6}{2\left(-3\right)-9\times 6}&\frac{2}{2\left(-3\right)-9\times 6}\end{matrix}\right)\left(\begin{matrix}-7\\9\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}&\frac{3}{20}\\\frac{1}{10}&-\frac{1}{30}\end{matrix}\right)\left(\begin{matrix}-7\\9\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}\left(-7\right)+\frac{3}{20}\times 9\\\frac{1}{10}\left(-7\right)-\frac{1}{30}\times 9\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
अंकगणित करा.
x=1,y=-1
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
2x+9y=-7,6x-3y=9
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
6\times 2x+6\times 9y=6\left(-7\right),2\times 6x+2\left(-3\right)y=2\times 9
2x आणि 6x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 6 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने गुणाकार करा.
12x+54y=-42,12x-6y=18
सरलीकृत करा.
12x-12x+54y+6y=-42-18
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 12x+54y=-42 मधून 12x-6y=18 वजा करा.
54y+6y=-42-18
12x ते -12x जोडा. 12x आणि -12x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
60y=-42-18
54y ते 6y जोडा.
60y=-60
-42 ते -18 जोडा.
y=-1
दोन्ही बाजूंना 60 ने विभागा.
6x-3\left(-1\right)=9
6x-3y=9 मध्ये y साठी -1 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
6x+3=9
-1 ला -3 वेळा गुणाकार करा.
6x=6
समीकरणाच्या दोन्ही बाजूंमधून 3 वजा करा.
x=1
दोन्ही बाजूंना 6 ने विभागा.
x=1,y=-1
सिस्टम आता सोडवली आहे.