मुख्य सामग्री वगळा
निर्धारकाची गणना करा
Tick mark Image
मूल्यांकन करा
Tick mark Image

शेअर करा

det(\left(\begin{matrix}6&1&0\\0&1&0\\2&1&0\end{matrix}\right))
विकर्ण पद्धत वापरून मॅट्रिक्सचा निर्धारक शोधा.
\left(\begin{matrix}6&1&0&6&1\\0&1&0&0&1\\2&1&0&2&1\end{matrix}\right)
प्रथम दोन स्तंभ चौथा आणि पाचवा स्तंभ म्हणून पुनरावृत्त करून मूळ मॅट्रिक्स वाढवा.
\text{true}
उर्ध्व डाव्या प्रवेशापासून सुरूवात करून, अधोमुखी विकीर्णावर गुणाकार करा, आणि परिणामी उत्पादनांची बेरीज करा.
0
अधोमुखी विकर्ण उत्पादनांच्या बेरजेमधून उर्ध्वगामी विकर्ण उत्पादनांची बेरीज वजा करा.
det(\left(\begin{matrix}6&1&0\\0&1&0\\2&1&0\end{matrix}\right))
मायनर्सद्वारा विस्तार पद्धत वापरून मॅट्रिक्सचा निर्धारक शोधा (यास कोफॅक्टर द्वारा विस्तार असेही ओळखले जाते).
6det(\left(\begin{matrix}1&0\\1&0\end{matrix}\right))-det(\left(\begin{matrix}0&0\\2&0\end{matrix}\right))
मायनर्सद्वारा विस्तार करण्यासाठी, प्रथम पंक्तीतील प्रत्येक घटकाचा त्याच्या मायनरने गुणाकार करा, जो 2\times 2 मॅट्रिक्सचा निर्धारक आहे जे ते घटक समाविष्ट असलेली पंक्ती आणि स्तंभ हटवून तयार केली गेली, नंतर घटकाच्या स्थान चिन्हाने गुणाकार करा.
0
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, निर्धारक ad-bc आहे.