मुख्य सामग्री वगळा
मूल्यांकन करा
Tick mark Image
घटक
Tick mark Image

वेब शोधामधून समान प्रश्न

शेअर करा

det(\left(\begin{matrix}-2&-1&3\\-1&3&2\\2&3&-2\end{matrix}\right))
विकर्ण पद्धत वापरून मॅट्रिक्सचा निर्धारक शोधा.
\left(\begin{matrix}-2&-1&3&-2&-1\\-1&3&2&-1&3\\2&3&-2&2&3\end{matrix}\right)
प्रथम दोन स्तंभ चौथा आणि पाचवा स्तंभ म्हणून पुनरावृत्त करून मूळ मॅट्रिक्स वाढवा.
-2\times 3\left(-2\right)-2\times 2+3\left(-1\right)\times 3=-1
उर्ध्व डाव्या प्रवेशापासून सुरूवात करून, अधोमुखी विकीर्णावर गुणाकार करा, आणि परिणामी उत्पादनांची बेरीज करा.
2\times 3\times 3+3\times 2\left(-2\right)-2\left(-1\right)\left(-1\right)=4
खालील डाव्या प्रवेशापासून सुरूवात करून, वर विकिर्णावर गुणाकार करा, आणि परिणामी उत्पादनांची बेरीज करा.
-1-4
अधोमुखी विकर्ण उत्पादनांच्या बेरजेमधून उर्ध्वगामी विकर्ण उत्पादनांची बेरीज वजा करा.
-5
-1 मधून 4 वजा करा.
det(\left(\begin{matrix}-2&-1&3\\-1&3&2\\2&3&-2\end{matrix}\right))
मायनर्सद्वारा विस्तार पद्धत वापरून मॅट्रिक्सचा निर्धारक शोधा (यास कोफॅक्टर द्वारा विस्तार असेही ओळखले जाते).
-2det(\left(\begin{matrix}3&2\\3&-2\end{matrix}\right))-\left(-det(\left(\begin{matrix}-1&2\\2&-2\end{matrix}\right))\right)+3det(\left(\begin{matrix}-1&3\\2&3\end{matrix}\right))
मायनर्सद्वारा विस्तार करण्यासाठी, प्रथम पंक्तीतील प्रत्येक घटकाचा त्याच्या मायनरने गुणाकार करा, जो 2\times 2 मॅट्रिक्सचा निर्धारक आहे जे ते घटक समाविष्ट असलेली पंक्ती आणि स्तंभ हटवून तयार केली गेली, नंतर घटकाच्या स्थान चिन्हाने गुणाकार करा.
-2\left(3\left(-2\right)-3\times 2\right)-\left(-\left(-\left(-2\right)-2\times 2\right)\right)+3\left(-3-2\times 3\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, निर्धारक ad-bc आहे.
-2\left(-12\right)-\left(-\left(-2\right)\right)+3\left(-9\right)
सरलीकृत करा.
-5
अंतिम परिणाम मिळविण्यासाठी टर्म जोडा.