मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

x-y=3
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून y वजा करा.
x-y=3,7x-5y=19
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
x-y=3
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
x=y+3
समीकरणाच्या दोन्ही बाजूस y जोडा.
7\left(y+3\right)-5y=19
इतर समीकरणामध्ये x साठी y+3 चा विकल्प वापरा, 7x-5y=19.
7y+21-5y=19
y+3 ला 7 वेळा गुणाकार करा.
2y+21=19
7y ते -5y जोडा.
2y=-2
समीकरणाच्या दोन्ही बाजूंमधून 21 वजा करा.
y=-1
दोन्ही बाजूंना 2 ने विभागा.
x=-1+3
x=y+3 मध्ये y साठी -1 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=2
3 ते -1 जोडा.
x=2,y=-1
सिस्टम आता सोडवली आहे.
x-y=3
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून y वजा करा.
x-y=3,7x-5y=19
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\19\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right))\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right))\left(\begin{matrix}3\\19\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&-1\\7&-5\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right))\left(\begin{matrix}3\\19\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\7&-5\end{matrix}\right))\left(\begin{matrix}3\\19\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-5-\left(-7\right)}&-\frac{-1}{-5-\left(-7\right)}\\-\frac{7}{-5-\left(-7\right)}&\frac{1}{-5-\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}3\\19\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}&\frac{1}{2}\\-\frac{7}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\19\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\times 3+\frac{1}{2}\times 19\\-\frac{7}{2}\times 3+\frac{1}{2}\times 19\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
अंकगणित करा.
x=2,y=-1
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
x-y=3
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून y वजा करा.
x-y=3,7x-5y=19
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
7x+7\left(-1\right)y=7\times 3,7x-5y=19
x आणि 7x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 7 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 1 ने गुणाकार करा.
7x-7y=21,7x-5y=19
सरलीकृत करा.
7x-7x-7y+5y=21-19
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 7x-7y=21 मधून 7x-5y=19 वजा करा.
-7y+5y=21-19
7x ते -7x जोडा. 7x आणि -7x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-2y=21-19
-7y ते 5y जोडा.
-2y=2
21 ते -19 जोडा.
y=-1
दोन्ही बाजूंना -2 ने विभागा.
7x-5\left(-1\right)=19
7x-5y=19 मध्ये y साठी -1 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
7x+5=19
-1 ला -5 वेळा गुणाकार करा.
7x=14
समीकरणाच्या दोन्ही बाजूंमधून 5 वजा करा.
x=2
दोन्ही बाजूंना 7 ने विभागा.
x=2,y=-1
सिस्टम आता सोडवली आहे.