मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

x+3-y=0
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून y वजा करा.
x-y=-3
दोन्ही बाजूंकडून 3 वजा करा. कोणत्याही संख्येला शून्यातून वजा केल्यास ऋण संख्या मिळते.
x-y=-3,x-2y=5
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
x-y=-3
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
x=y-3
समीकरणाच्या दोन्ही बाजूस y जोडा.
y-3-2y=5
इतर समीकरणामध्ये x साठी y-3 चा विकल्प वापरा, x-2y=5.
-y-3=5
y ते -2y जोडा.
-y=8
समीकरणाच्या दोन्ही बाजूस 3 जोडा.
y=-8
दोन्ही बाजूंना -1 ने विभागा.
x=-8-3
x=y-3 मध्ये y साठी -8 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-11
-3 ते -8 जोडा.
x=-11,y=-8
सिस्टम आता सोडवली आहे.
x+3-y=0
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून y वजा करा.
x-y=-3
दोन्ही बाजूंकडून 3 वजा करा. कोणत्याही संख्येला शून्यातून वजा केल्यास ऋण संख्या मिळते.
x-y=-3,x-2y=5
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\5\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right))\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right))\left(\begin{matrix}-3\\5\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&-1\\1&-2\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right))\left(\begin{matrix}-3\\5\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right))\left(\begin{matrix}-3\\5\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-1\right)}&-\frac{-1}{-2-\left(-1\right)}\\-\frac{1}{-2-\left(-1\right)}&\frac{1}{-2-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-3\\5\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}-3\\5\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\left(-3\right)-5\\-3-5\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\-8\end{matrix}\right)
अंकगणित करा.
x=-11,y=-8
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
x+3-y=0
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून y वजा करा.
x-y=-3
दोन्ही बाजूंकडून 3 वजा करा. कोणत्याही संख्येला शून्यातून वजा केल्यास ऋण संख्या मिळते.
x-y=-3,x-2y=5
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
x-x-y+2y=-3-5
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून x-y=-3 मधून x-2y=5 वजा करा.
-y+2y=-3-5
x ते -x जोडा. x आणि -x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
y=-3-5
-y ते 2y जोडा.
y=-8
-3 ते -5 जोडा.
x-2\left(-8\right)=5
x-2y=5 मध्ये y साठी -8 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x+16=5
-8 ला -2 वेळा गुणाकार करा.
x=-11
समीकरणाच्या दोन्ही बाजूंमधून 16 वजा करा.
x=-11,y=-8
सिस्टम आता सोडवली आहे.