\left\{ \begin{array} { l } { x + 3 = y } \\ { x - 2 y = 5 } \end{array} \right.
x, y साठी सोडवा
x=-11
y=-8
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
x+3-y=0
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून y वजा करा.
x-y=-3
दोन्ही बाजूंकडून 3 वजा करा. कोणत्याही संख्येला शून्यातून वजा केल्यास ऋण संख्या मिळते.
x-y=-3,x-2y=5
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
x-y=-3
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
x=y-3
समीकरणाच्या दोन्ही बाजूस y जोडा.
y-3-2y=5
इतर समीकरणामध्ये x साठी y-3 चा विकल्प वापरा, x-2y=5.
-y-3=5
y ते -2y जोडा.
-y=8
समीकरणाच्या दोन्ही बाजूस 3 जोडा.
y=-8
दोन्ही बाजूंना -1 ने विभागा.
x=-8-3
x=y-3 मध्ये y साठी -8 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-11
-3 ते -8 जोडा.
x=-11,y=-8
सिस्टम आता सोडवली आहे.
x+3-y=0
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून y वजा करा.
x-y=-3
दोन्ही बाजूंकडून 3 वजा करा. कोणत्याही संख्येला शून्यातून वजा केल्यास ऋण संख्या मिळते.
x-y=-3,x-2y=5
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\5\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right))\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right))\left(\begin{matrix}-3\\5\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&-1\\1&-2\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right))\left(\begin{matrix}-3\\5\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right))\left(\begin{matrix}-3\\5\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-1\right)}&-\frac{-1}{-2-\left(-1\right)}\\-\frac{1}{-2-\left(-1\right)}&\frac{1}{-2-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-3\\5\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}-3\\5\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\left(-3\right)-5\\-3-5\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\-8\end{matrix}\right)
अंकगणित करा.
x=-11,y=-8
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
x+3-y=0
पहिल्या समीकरणाचा विचार करा. दोन्ही बाजूंकडून y वजा करा.
x-y=-3
दोन्ही बाजूंकडून 3 वजा करा. कोणत्याही संख्येला शून्यातून वजा केल्यास ऋण संख्या मिळते.
x-y=-3,x-2y=5
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
x-x-y+2y=-3-5
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून x-y=-3 मधून x-2y=5 वजा करा.
-y+2y=-3-5
x ते -x जोडा. x आणि -x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
y=-3-5
-y ते 2y जोडा.
y=-8
-3 ते -5 जोडा.
x-2\left(-8\right)=5
x-2y=5 मध्ये y साठी -8 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x+16=5
-8 ला -2 वेळा गुणाकार करा.
x=-11
समीकरणाच्या दोन्ही बाजूंमधून 16 वजा करा.
x=-11,y=-8
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}