मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

x+2y=8,3x-y=3
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
x+2y=8
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
x=-2y+8
समीकरणाच्या दोन्ही बाजूंमधून 2y वजा करा.
3\left(-2y+8\right)-y=3
इतर समीकरणामध्ये x साठी -2y+8 चा विकल्प वापरा, 3x-y=3.
-6y+24-y=3
-2y+8 ला 3 वेळा गुणाकार करा.
-7y+24=3
-6y ते -y जोडा.
-7y=-21
समीकरणाच्या दोन्ही बाजूंमधून 24 वजा करा.
y=3
दोन्ही बाजूंना -7 ने विभागा.
x=-2\times 3+8
x=-2y+8 मध्ये y साठी 3 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-6+8
3 ला -2 वेळा गुणाकार करा.
x=2
8 ते -6 जोडा.
x=2,y=3
सिस्टम आता सोडवली आहे.
x+2y=8,3x-y=3
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\3\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}1&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}8\\3\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&2\\3&-1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}8\\3\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}8\\3\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2\times 3}&-\frac{2}{-1-2\times 3}\\-\frac{3}{-1-2\times 3}&\frac{1}{-1-2\times 3}\end{matrix}\right)\left(\begin{matrix}8\\3\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\\frac{3}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}8\\3\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 8+\frac{2}{7}\times 3\\\frac{3}{7}\times 8-\frac{1}{7}\times 3\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
अंकगणित करा.
x=2,y=3
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
x+2y=8,3x-y=3
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
3x+3\times 2y=3\times 8,3x-y=3
x आणि 3x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 1 ने गुणाकार करा.
3x+6y=24,3x-y=3
सरलीकृत करा.
3x-3x+6y+y=24-3
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 3x+6y=24 मधून 3x-y=3 वजा करा.
6y+y=24-3
3x ते -3x जोडा. 3x आणि -3x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
7y=24-3
6y ते y जोडा.
7y=21
24 ते -3 जोडा.
y=3
दोन्ही बाजूंना 7 ने विभागा.
3x-3=3
3x-y=3 मध्ये y साठी 3 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
3x=6
समीकरणाच्या दोन्ही बाजूस 3 जोडा.
x=2
दोन्ही बाजूंना 3 ने विभागा.
x=2,y=3
सिस्टम आता सोडवली आहे.