मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

x-y=-5
दुसर्‍या समीकरणाचा विचार करा. दोन्ही बाजूंकडून y वजा करा.
x+2y=1,x-y=-5
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
x+2y=1
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
x=-2y+1
समीकरणाच्या दोन्ही बाजूंमधून 2y वजा करा.
-2y+1-y=-5
इतर समीकरणामध्ये x साठी -2y+1 चा विकल्प वापरा, x-y=-5.
-3y+1=-5
-2y ते -y जोडा.
-3y=-6
समीकरणाच्या दोन्ही बाजूंमधून 1 वजा करा.
y=2
दोन्ही बाजूंना -3 ने विभागा.
x=-2\times 2+1
x=-2y+1 मध्ये y साठी 2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-4+1
2 ला -2 वेळा गुणाकार करा.
x=-3
1 ते -4 जोडा.
x=-3,y=2
सिस्टम आता सोडवली आहे.
x-y=-5
दुसर्‍या समीकरणाचा विचार करा. दोन्ही बाजूंकडून y वजा करा.
x+2y=1,x-y=-5
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}1&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-5\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}1&2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
समीकरणाला \left(\begin{matrix}1&2\\1&-1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2}&-\frac{2}{-1-2}\\-\frac{1}{-1-2}&\frac{1}{-1-2}\end{matrix}\right)\left(\begin{matrix}1\\-5\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}1\\-5\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}+\frac{2}{3}\left(-5\right)\\\frac{1}{3}-\frac{1}{3}\left(-5\right)\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
अंकगणित करा.
x=-3,y=2
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
x-y=-5
दुसर्‍या समीकरणाचा विचार करा. दोन्ही बाजूंकडून y वजा करा.
x+2y=1,x-y=-5
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
x-x+2y+y=1+5
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून x+2y=1 मधून x-y=-5 वजा करा.
2y+y=1+5
x ते -x जोडा. x आणि -x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
3y=1+5
2y ते y जोडा.
3y=6
1 ते 5 जोडा.
y=2
दोन्ही बाजूंना 3 ने विभागा.
x-2=-5
x-y=-5 मध्ये y साठी 2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-3
समीकरणाच्या दोन्ही बाजूस 2 जोडा.
x=-3,y=2
सिस्टम आता सोडवली आहे.