\left\{ \begin{array} { l } { a x \geq 2 } \\ { \sqrt { x } - 1 > a } \\ { 3 x \leq 2 a + 11 } \end{array} \right.
x साठी सोडवा
\left\{\begin{matrix}x\in [\frac{2}{a},\frac{2a+11}{3}]\text{, }&\frac{2}{a}>(a+1)^{2}\text{ and }a\geq \frac{1}{2}\\x\in ((a+1)^{2},\frac{2a+11}{3}]\text{, }&a<\frac{2\sqrt{7}-2}{3}\text{ and }\frac{2}{a}<(a+1)^{2}\text{ and }a\geq \frac{1}{2}\\x\in ((a+1)^{2},\frac{2}{a}]\text{, }&(a+1)^{2}<\frac{2}{a}\text{ and }a>-6\text{ and }a<0\\x\in [0,(a+1)^{2})\text{, }&a\geq \frac{-2\sqrt{7}-2}{3}\text{ and }\frac{2}{a}\geq (a+1)^{2}\text{ and }a<-1\\x\in [0,\frac{2a+11}{3}]\text{, }&a\geq -\frac{11}{2}\text{ and }\frac{2}{a}\geq (a+1)^{2}\text{ and }a<\frac{-2\sqrt{7}-2}{3}\end{matrix}\right.
a साठी सोडवा
\left\{\begin{matrix}a\in [\frac{2}{x},\sqrt{x}-1)\text{, }&x\leq 4\text{ and }\frac{2}{x}<\sqrt{x}-1\text{ and }x>0\\a\in [\frac{3x-11}{2},\sqrt{x}-1)\text{, }&x<\frac{4\sqrt{7}+29}{9}\text{ and }\frac{2}{x}<\sqrt{x}-1\text{ and }x>4\end{matrix}\right.
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}