मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

6x-3y=12,2x+2y=10
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
6x-3y=12
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
6x=3y+12
समीकरणाच्या दोन्ही बाजूस 3y जोडा.
x=\frac{1}{6}\left(3y+12\right)
दोन्ही बाजूंना 6 ने विभागा.
x=\frac{1}{2}y+2
12+3y ला \frac{1}{6} वेळा गुणाकार करा.
2\left(\frac{1}{2}y+2\right)+2y=10
इतर समीकरणामध्ये x साठी \frac{y}{2}+2 चा विकल्प वापरा, 2x+2y=10.
y+4+2y=10
\frac{y}{2}+2 ला 2 वेळा गुणाकार करा.
3y+4=10
y ते 2y जोडा.
3y=6
समीकरणाच्या दोन्ही बाजूंमधून 4 वजा करा.
y=2
दोन्ही बाजूंना 3 ने विभागा.
x=\frac{1}{2}\times 2+2
x=\frac{1}{2}y+2 मध्ये y साठी 2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=1+2
2 ला \frac{1}{2} वेळा गुणाकार करा.
x=3
2 ते 1 जोडा.
x=3,y=2
सिस्टम आता सोडवली आहे.
6x-3y=12,2x+2y=10
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}6&-3\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\10\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}6&-3\\2&2\end{matrix}\right))\left(\begin{matrix}6&-3\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-3\\2&2\end{matrix}\right))\left(\begin{matrix}12\\10\end{matrix}\right)
समीकरणाला \left(\begin{matrix}6&-3\\2&2\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-3\\2&2\end{matrix}\right))\left(\begin{matrix}12\\10\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-3\\2&2\end{matrix}\right))\left(\begin{matrix}12\\10\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{6\times 2-\left(-3\times 2\right)}&-\frac{-3}{6\times 2-\left(-3\times 2\right)}\\-\frac{2}{6\times 2-\left(-3\times 2\right)}&\frac{6}{6\times 2-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}12\\10\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&\frac{1}{6}\\-\frac{1}{9}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}12\\10\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\times 12+\frac{1}{6}\times 10\\-\frac{1}{9}\times 12+\frac{1}{3}\times 10\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
अंकगणित करा.
x=3,y=2
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
6x-3y=12,2x+2y=10
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
2\times 6x+2\left(-3\right)y=2\times 12,6\times 2x+6\times 2y=6\times 10
6x आणि 2x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 6 ने गुणाकार करा.
12x-6y=24,12x+12y=60
सरलीकृत करा.
12x-12x-6y-12y=24-60
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 12x-6y=24 मधून 12x+12y=60 वजा करा.
-6y-12y=24-60
12x ते -12x जोडा. 12x आणि -12x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-18y=24-60
-6y ते -12y जोडा.
-18y=-36
24 ते -60 जोडा.
y=2
दोन्ही बाजूंना -18 ने विभागा.
2x+2\times 2=10
2x+2y=10 मध्ये y साठी 2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
2x+4=10
2 ला 2 वेळा गुणाकार करा.
2x=6
समीकरणाच्या दोन्ही बाजूंमधून 4 वजा करा.
x=3
दोन्ही बाजूंना 2 ने विभागा.
x=3,y=2
सिस्टम आता सोडवली आहे.