मुख्य सामग्री वगळा
k, b साठी सोडवा
Tick mark Image

वेब शोधामधून समान प्रश्न

शेअर करा

3k+b=5
पहिल्या समीकरणाचा विचार करा. बाजू स्वॅप करा ज्यामुळे सर्व चल टर्म डाव्या बाजूला असतील.
-4k+b=-9
दुसर्‍या समीकरणाचा विचार करा. बाजू स्वॅप करा ज्यामुळे सर्व चल टर्म डाव्या बाजूला असतील.
3k+b=5,-4k+b=-9
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
3k+b=5
समान चिन्हाच्या डाव्या बाजूला k विलग करून, k साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
3k=-b+5
समीकरणाच्या दोन्ही बाजूंमधून b वजा करा.
k=\frac{1}{3}\left(-b+5\right)
दोन्ही बाजूंना 3 ने विभागा.
k=-\frac{1}{3}b+\frac{5}{3}
-b+5 ला \frac{1}{3} वेळा गुणाकार करा.
-4\left(-\frac{1}{3}b+\frac{5}{3}\right)+b=-9
इतर समीकरणामध्ये k साठी \frac{-b+5}{3} चा विकल्प वापरा, -4k+b=-9.
\frac{4}{3}b-\frac{20}{3}+b=-9
\frac{-b+5}{3} ला -4 वेळा गुणाकार करा.
\frac{7}{3}b-\frac{20}{3}=-9
\frac{4b}{3} ते b जोडा.
\frac{7}{3}b=-\frac{7}{3}
समीकरणाच्या दोन्ही बाजूस \frac{20}{3} जोडा.
b=-1
समीकरणाच्या दोन्ही बाजूंना \frac{7}{3} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
k=-\frac{1}{3}\left(-1\right)+\frac{5}{3}
k=-\frac{1}{3}b+\frac{5}{3} मध्ये b साठी -1 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण k साठी थेट सोडवू शकता.
k=\frac{1+5}{3}
-1 ला -\frac{1}{3} वेळा गुणाकार करा.
k=2
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{5}{3} ते \frac{1}{3} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
k=2,b=-1
सिस्टम आता सोडवली आहे.
3k+b=5
पहिल्या समीकरणाचा विचार करा. बाजू स्वॅप करा ज्यामुळे सर्व चल टर्म डाव्या बाजूला असतील.
-4k+b=-9
दुसर्‍या समीकरणाचा विचार करा. बाजू स्वॅप करा ज्यामुळे सर्व चल टर्म डाव्या बाजूला असतील.
3k+b=5,-4k+b=-9
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}3&1\\-4&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}5\\-9\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}3&1\\-4&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
समीकरणाला \left(\begin{matrix}3&1\\-4&1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-4\right)}&-\frac{1}{3-\left(-4\right)}\\-\frac{-4}{3-\left(-4\right)}&\frac{3}{3-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}5\\-9\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&-\frac{1}{7}\\\frac{4}{7}&\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}5\\-9\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 5-\frac{1}{7}\left(-9\right)\\\frac{4}{7}\times 5+\frac{3}{7}\left(-9\right)\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
अंकगणित करा.
k=2,b=-1
मॅट्रिक्सचे k आणि b घटक बाहेर काढा.
3k+b=5
पहिल्या समीकरणाचा विचार करा. बाजू स्वॅप करा ज्यामुळे सर्व चल टर्म डाव्या बाजूला असतील.
-4k+b=-9
दुसर्‍या समीकरणाचा विचार करा. बाजू स्वॅप करा ज्यामुळे सर्व चल टर्म डाव्या बाजूला असतील.
3k+b=5,-4k+b=-9
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
3k+4k+b-b=5+9
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 3k+b=5 मधून -4k+b=-9 वजा करा.
3k+4k=5+9
b ते -b जोडा. b आणि -b रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
7k=5+9
3k ते 4k जोडा.
7k=14
5 ते 9 जोडा.
k=2
दोन्ही बाजूंना 7 ने विभागा.
-4\times 2+b=-9
-4k+b=-9 मध्ये k साठी 2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण b साठी थेट सोडवू शकता.
-8+b=-9
2 ला -4 वेळा गुणाकार करा.
b=-1
समीकरणाच्या दोन्ही बाजूस 8 जोडा.
k=2,b=-1
सिस्टम आता सोडवली आहे.