मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

3x-y=6,5x+y=10
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
3x-y=6
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
3x=y+6
समीकरणाच्या दोन्ही बाजूस y जोडा.
x=\frac{1}{3}\left(y+6\right)
दोन्ही बाजूंना 3 ने विभागा.
x=\frac{1}{3}y+2
y+6 ला \frac{1}{3} वेळा गुणाकार करा.
5\left(\frac{1}{3}y+2\right)+y=10
इतर समीकरणामध्ये x साठी \frac{y}{3}+2 चा विकल्प वापरा, 5x+y=10.
\frac{5}{3}y+10+y=10
\frac{y}{3}+2 ला 5 वेळा गुणाकार करा.
\frac{8}{3}y+10=10
\frac{5y}{3} ते y जोडा.
\frac{8}{3}y=0
समीकरणाच्या दोन्ही बाजूंमधून 10 वजा करा.
y=0
समीकरणाच्या दोन्ही बाजूंना \frac{8}{3} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=2
x=\frac{1}{3}y+2 मध्ये y साठी 0 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=2,y=0
सिस्टम आता सोडवली आहे.
3x-y=6,5x+y=10
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}3&-1\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\10\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}3&-1\\5&1\end{matrix}\right))\left(\begin{matrix}3&-1\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&1\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
समीकरणाला \left(\begin{matrix}3&-1\\5&1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&1\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&1\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-5\right)}&-\frac{-1}{3-\left(-5\right)}\\-\frac{5}{3-\left(-5\right)}&\frac{3}{3-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}6\\10\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\-\frac{5}{8}&\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}6\\10\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 6+\frac{1}{8}\times 10\\-\frac{5}{8}\times 6+\frac{3}{8}\times 10\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
अंकगणित करा.
x=2,y=0
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
3x-y=6,5x+y=10
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
5\times 3x+5\left(-1\right)y=5\times 6,3\times 5x+3y=3\times 10
3x आणि 5x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 5 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने गुणाकार करा.
15x-5y=30,15x+3y=30
सरलीकृत करा.
15x-15x-5y-3y=30-30
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 15x-5y=30 मधून 15x+3y=30 वजा करा.
-5y-3y=30-30
15x ते -15x जोडा. 15x आणि -15x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-8y=30-30
-5y ते -3y जोडा.
-8y=0
30 ते -30 जोडा.
y=0
दोन्ही बाजूंना -8 ने विभागा.
5x=10
5x+y=10 मध्ये y साठी 0 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=2
दोन्ही बाजूंना 5 ने विभागा.
x=2,y=0
सिस्टम आता सोडवली आहे.