मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

3x-y=11,5x+3y=9
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
3x-y=11
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
3x=y+11
समीकरणाच्या दोन्ही बाजूस y जोडा.
x=\frac{1}{3}\left(y+11\right)
दोन्ही बाजूंना 3 ने विभागा.
x=\frac{1}{3}y+\frac{11}{3}
y+11 ला \frac{1}{3} वेळा गुणाकार करा.
5\left(\frac{1}{3}y+\frac{11}{3}\right)+3y=9
इतर समीकरणामध्ये x साठी \frac{11+y}{3} चा विकल्प वापरा, 5x+3y=9.
\frac{5}{3}y+\frac{55}{3}+3y=9
\frac{11+y}{3} ला 5 वेळा गुणाकार करा.
\frac{14}{3}y+\frac{55}{3}=9
\frac{5y}{3} ते 3y जोडा.
\frac{14}{3}y=-\frac{28}{3}
समीकरणाच्या दोन्ही बाजूंमधून \frac{55}{3} वजा करा.
y=-2
समीकरणाच्या दोन्ही बाजूंना \frac{14}{3} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=\frac{1}{3}\left(-2\right)+\frac{11}{3}
x=\frac{1}{3}y+\frac{11}{3} मध्ये y साठी -2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{-2+11}{3}
-2 ला \frac{1}{3} वेळा गुणाकार करा.
x=3
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{11}{3} ते -\frac{2}{3} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=3,y=-2
सिस्टम आता सोडवली आहे.
3x-y=11,5x+3y=9
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}3&-1\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\9\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}3&-1\\5&3\end{matrix}\right))\left(\begin{matrix}3&-1\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&3\end{matrix}\right))\left(\begin{matrix}11\\9\end{matrix}\right)
समीकरणाला \left(\begin{matrix}3&-1\\5&3\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&3\end{matrix}\right))\left(\begin{matrix}11\\9\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&3\end{matrix}\right))\left(\begin{matrix}11\\9\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-5\right)}&-\frac{-1}{3\times 3-\left(-5\right)}\\-\frac{5}{3\times 3-\left(-5\right)}&\frac{3}{3\times 3-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}11\\9\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}&\frac{1}{14}\\-\frac{5}{14}&\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}11\\9\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}\times 11+\frac{1}{14}\times 9\\-\frac{5}{14}\times 11+\frac{3}{14}\times 9\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
अंकगणित करा.
x=3,y=-2
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
3x-y=11,5x+3y=9
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
5\times 3x+5\left(-1\right)y=5\times 11,3\times 5x+3\times 3y=3\times 9
3x आणि 5x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 5 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने गुणाकार करा.
15x-5y=55,15x+9y=27
सरलीकृत करा.
15x-15x-5y-9y=55-27
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 15x-5y=55 मधून 15x+9y=27 वजा करा.
-5y-9y=55-27
15x ते -15x जोडा. 15x आणि -15x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-14y=55-27
-5y ते -9y जोडा.
-14y=28
55 ते -27 जोडा.
y=-2
दोन्ही बाजूंना -14 ने विभागा.
5x+3\left(-2\right)=9
5x+3y=9 मध्ये y साठी -2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
5x-6=9
-2 ला 3 वेळा गुणाकार करा.
5x=15
समीकरणाच्या दोन्ही बाजूस 6 जोडा.
x=3
दोन्ही बाजूंना 5 ने विभागा.
x=3,y=-2
सिस्टम आता सोडवली आहे.