मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

3x-2y=13,x+2y=-1
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
3x-2y=13
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
3x=2y+13
समीकरणाच्या दोन्ही बाजूस 2y जोडा.
x=\frac{1}{3}\left(2y+13\right)
दोन्ही बाजूंना 3 ने विभागा.
x=\frac{2}{3}y+\frac{13}{3}
2y+13 ला \frac{1}{3} वेळा गुणाकार करा.
\frac{2}{3}y+\frac{13}{3}+2y=-1
इतर समीकरणामध्ये x साठी \frac{2y+13}{3} चा विकल्प वापरा, x+2y=-1.
\frac{8}{3}y+\frac{13}{3}=-1
\frac{2y}{3} ते 2y जोडा.
\frac{8}{3}y=-\frac{16}{3}
समीकरणाच्या दोन्ही बाजूंमधून \frac{13}{3} वजा करा.
y=-2
समीकरणाच्या दोन्ही बाजूंना \frac{8}{3} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=\frac{2}{3}\left(-2\right)+\frac{13}{3}
x=\frac{2}{3}y+\frac{13}{3} मध्ये y साठी -2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{-4+13}{3}
-2 ला \frac{2}{3} वेळा गुणाकार करा.
x=3
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{13}{3} ते -\frac{4}{3} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=3,y=-2
सिस्टम आता सोडवली आहे.
3x-2y=13,x+2y=-1
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}3&-2\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-1\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}3&-2\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}13\\-1\end{matrix}\right)
समीकरणाला \left(\begin{matrix}3&-2\\1&2\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}13\\-1\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}13\\-1\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-2\right)}&-\frac{-2}{3\times 2-\left(-2\right)}\\-\frac{1}{3\times 2-\left(-2\right)}&\frac{3}{3\times 2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}13\\-1\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{1}{8}&\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}13\\-1\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 13+\frac{1}{4}\left(-1\right)\\-\frac{1}{8}\times 13+\frac{3}{8}\left(-1\right)\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
अंकगणित करा.
x=3,y=-2
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
3x-2y=13,x+2y=-1
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
3x-2y=13,3x+3\times 2y=3\left(-1\right)
3x आणि x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 1 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने गुणाकार करा.
3x-2y=13,3x+6y=-3
सरलीकृत करा.
3x-3x-2y-6y=13+3
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 3x-2y=13 मधून 3x+6y=-3 वजा करा.
-2y-6y=13+3
3x ते -3x जोडा. 3x आणि -3x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-8y=13+3
-2y ते -6y जोडा.
-8y=16
13 ते 3 जोडा.
y=-2
दोन्ही बाजूंना -8 ने विभागा.
x+2\left(-2\right)=-1
x+2y=-1 मध्ये y साठी -2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x-4=-1
-2 ला 2 वेळा गुणाकार करा.
x=3
समीकरणाच्या दोन्ही बाजूस 4 जोडा.
x=3,y=-2
सिस्टम आता सोडवली आहे.