\left\{ \begin{array} { l } { 3 x + 5 y = 10 } \\ { 5 x + 3 y = 6 } \end{array} \right.
x, y साठी सोडवा
x=0
y=2
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
3x+5y=10,5x+3y=6
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
3x+5y=10
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
3x=-5y+10
समीकरणाच्या दोन्ही बाजूंमधून 5y वजा करा.
x=\frac{1}{3}\left(-5y+10\right)
दोन्ही बाजूंना 3 ने विभागा.
x=-\frac{5}{3}y+\frac{10}{3}
-5y+10 ला \frac{1}{3} वेळा गुणाकार करा.
5\left(-\frac{5}{3}y+\frac{10}{3}\right)+3y=6
इतर समीकरणामध्ये x साठी \frac{-5y+10}{3} चा विकल्प वापरा, 5x+3y=6.
-\frac{25}{3}y+\frac{50}{3}+3y=6
\frac{-5y+10}{3} ला 5 वेळा गुणाकार करा.
-\frac{16}{3}y+\frac{50}{3}=6
-\frac{25y}{3} ते 3y जोडा.
-\frac{16}{3}y=-\frac{32}{3}
समीकरणाच्या दोन्ही बाजूंमधून \frac{50}{3} वजा करा.
y=2
समीकरणाच्या दोन्ही बाजूंना -\frac{16}{3} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=-\frac{5}{3}\times 2+\frac{10}{3}
x=-\frac{5}{3}y+\frac{10}{3} मध्ये y साठी 2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{-10+10}{3}
2 ला -\frac{5}{3} वेळा गुणाकार करा.
x=0
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{10}{3} ते -\frac{10}{3} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=0,y=2
सिस्टम आता सोडवली आहे.
3x+5y=10,5x+3y=6
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}3&5\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\6\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}3&5\\5&3\end{matrix}\right))\left(\begin{matrix}3&5\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&3\end{matrix}\right))\left(\begin{matrix}10\\6\end{matrix}\right)
समीकरणाला \left(\begin{matrix}3&5\\5&3\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&3\end{matrix}\right))\left(\begin{matrix}10\\6\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&3\end{matrix}\right))\left(\begin{matrix}10\\6\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-5\times 5}&-\frac{5}{3\times 3-5\times 5}\\-\frac{5}{3\times 3-5\times 5}&\frac{3}{3\times 3-5\times 5}\end{matrix}\right)\left(\begin{matrix}10\\6\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{16}&\frac{5}{16}\\\frac{5}{16}&-\frac{3}{16}\end{matrix}\right)\left(\begin{matrix}10\\6\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{16}\times 10+\frac{5}{16}\times 6\\\frac{5}{16}\times 10-\frac{3}{16}\times 6\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
अंकगणित करा.
x=0,y=2
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
3x+5y=10,5x+3y=6
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
5\times 3x+5\times 5y=5\times 10,3\times 5x+3\times 3y=3\times 6
3x आणि 5x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 5 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने गुणाकार करा.
15x+25y=50,15x+9y=18
सरलीकृत करा.
15x-15x+25y-9y=50-18
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 15x+25y=50 मधून 15x+9y=18 वजा करा.
25y-9y=50-18
15x ते -15x जोडा. 15x आणि -15x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
16y=50-18
25y ते -9y जोडा.
16y=32
50 ते -18 जोडा.
y=2
दोन्ही बाजूंना 16 ने विभागा.
5x+3\times 2=6
5x+3y=6 मध्ये y साठी 2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
5x+6=6
2 ला 3 वेळा गुणाकार करा.
5x=0
समीकरणाच्या दोन्ही बाजूंमधून 6 वजा करा.
x=0
दोन्ही बाजूंना 5 ने विभागा.
x=0,y=2
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}