\left\{ \begin{array} { l } { 2 x - 3 y = 5 } \\ { x + 3 y = 7 } \end{array} \right.
x, y साठी सोडवा
x=4
y=1
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
2x-3y=5,x+3y=7
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
2x-3y=5
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
2x=3y+5
समीकरणाच्या दोन्ही बाजूस 3y जोडा.
x=\frac{1}{2}\left(3y+5\right)
दोन्ही बाजूंना 2 ने विभागा.
x=\frac{3}{2}y+\frac{5}{2}
3y+5 ला \frac{1}{2} वेळा गुणाकार करा.
\frac{3}{2}y+\frac{5}{2}+3y=7
इतर समीकरणामध्ये x साठी \frac{3y+5}{2} चा विकल्प वापरा, x+3y=7.
\frac{9}{2}y+\frac{5}{2}=7
\frac{3y}{2} ते 3y जोडा.
\frac{9}{2}y=\frac{9}{2}
समीकरणाच्या दोन्ही बाजूंमधून \frac{5}{2} वजा करा.
y=1
समीकरणाच्या दोन्ही बाजूंना \frac{9}{2} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=\frac{3+5}{2}
x=\frac{3}{2}y+\frac{5}{2} मध्ये y साठी 1 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=4
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{5}{2} ते \frac{3}{2} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=4,y=1
सिस्टम आता सोडवली आहे.
2x-3y=5,x+3y=7
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}2&-3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}2&-3\\1&3\end{matrix}\right))\left(\begin{matrix}2&-3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&3\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
समीकरणाला \left(\begin{matrix}2&-3\\1&3\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&3\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&3\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-3\right)}&-\frac{-3}{2\times 3-\left(-3\right)}\\-\frac{1}{2\times 3-\left(-3\right)}&\frac{2}{2\times 3-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\-\frac{1}{9}&\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 5+\frac{1}{3}\times 7\\-\frac{1}{9}\times 5+\frac{2}{9}\times 7\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
अंकगणित करा.
x=4,y=1
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
2x-3y=5,x+3y=7
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
2x-3y=5,2x+2\times 3y=2\times 7
2x आणि x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 1 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने गुणाकार करा.
2x-3y=5,2x+6y=14
सरलीकृत करा.
2x-2x-3y-6y=5-14
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 2x-3y=5 मधून 2x+6y=14 वजा करा.
-3y-6y=5-14
2x ते -2x जोडा. 2x आणि -2x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-9y=5-14
-3y ते -6y जोडा.
-9y=-9
5 ते -14 जोडा.
y=1
दोन्ही बाजूंना -9 ने विभागा.
x+3=7
x+3y=7 मध्ये y साठी 1 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=4
समीकरणाच्या दोन्ही बाजूंमधून 3 वजा करा.
x=4,y=1
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}