मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

2x-3y=5,3x-2y=5
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
2x-3y=5
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
2x=3y+5
समीकरणाच्या दोन्ही बाजूस 3y जोडा.
x=\frac{1}{2}\left(3y+5\right)
दोन्ही बाजूंना 2 ने विभागा.
x=\frac{3}{2}y+\frac{5}{2}
3y+5 ला \frac{1}{2} वेळा गुणाकार करा.
3\left(\frac{3}{2}y+\frac{5}{2}\right)-2y=5
इतर समीकरणामध्ये x साठी \frac{3y+5}{2} चा विकल्प वापरा, 3x-2y=5.
\frac{9}{2}y+\frac{15}{2}-2y=5
\frac{3y+5}{2} ला 3 वेळा गुणाकार करा.
\frac{5}{2}y+\frac{15}{2}=5
\frac{9y}{2} ते -2y जोडा.
\frac{5}{2}y=-\frac{5}{2}
समीकरणाच्या दोन्ही बाजूंमधून \frac{15}{2} वजा करा.
y=-1
समीकरणाच्या दोन्ही बाजूंना \frac{5}{2} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=\frac{3}{2}\left(-1\right)+\frac{5}{2}
x=\frac{3}{2}y+\frac{5}{2} मध्ये y साठी -1 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{-3+5}{2}
-1 ला \frac{3}{2} वेळा गुणाकार करा.
x=1
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{5}{2} ते -\frac{3}{2} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=1,y=-1
सिस्टम आता सोडवली आहे.
2x-3y=5,3x-2y=5
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\5\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
समीकरणाला \left(\begin{matrix}2&-3\\3&-2\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-\left(-3\times 3\right)}&-\frac{-3}{2\left(-2\right)-\left(-3\times 3\right)}\\-\frac{3}{2\left(-2\right)-\left(-3\times 3\right)}&\frac{2}{2\left(-2\right)-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&\frac{3}{5}\\-\frac{3}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\times 5+\frac{3}{5}\times 5\\-\frac{3}{5}\times 5+\frac{2}{5}\times 5\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
अंकगणित करा.
x=1,y=-1
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
2x-3y=5,3x-2y=5
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
3\times 2x+3\left(-3\right)y=3\times 5,2\times 3x+2\left(-2\right)y=2\times 5
2x आणि 3x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 3 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने गुणाकार करा.
6x-9y=15,6x-4y=10
सरलीकृत करा.
6x-6x-9y+4y=15-10
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 6x-9y=15 मधून 6x-4y=10 वजा करा.
-9y+4y=15-10
6x ते -6x जोडा. 6x आणि -6x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-5y=15-10
-9y ते 4y जोडा.
-5y=5
15 ते -10 जोडा.
y=-1
दोन्ही बाजूंना -5 ने विभागा.
3x-2\left(-1\right)=5
3x-2y=5 मध्ये y साठी -1 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
3x+2=5
-1 ला -2 वेळा गुणाकार करा.
3x=3
समीकरणाच्या दोन्ही बाजूंमधून 2 वजा करा.
x=1
दोन्ही बाजूंना 3 ने विभागा.
x=1,y=-1
सिस्टम आता सोडवली आहे.