मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

x-y=0
दुसर्‍या समीकरणाचा विचार करा. दोन्ही बाजूंकडून y वजा करा.
2x+y=60,x-y=0
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
2x+y=60
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
2x=-y+60
समीकरणाच्या दोन्ही बाजूंमधून y वजा करा.
x=\frac{1}{2}\left(-y+60\right)
दोन्ही बाजूंना 2 ने विभागा.
x=-\frac{1}{2}y+30
-y+60 ला \frac{1}{2} वेळा गुणाकार करा.
-\frac{1}{2}y+30-y=0
इतर समीकरणामध्ये x साठी -\frac{y}{2}+30 चा विकल्प वापरा, x-y=0.
-\frac{3}{2}y+30=0
-\frac{y}{2} ते -y जोडा.
-\frac{3}{2}y=-30
समीकरणाच्या दोन्ही बाजूंमधून 30 वजा करा.
y=20
समीकरणाच्या दोन्ही बाजूंना -\frac{3}{2} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=-\frac{1}{2}\times 20+30
x=-\frac{1}{2}y+30 मध्ये y साठी 20 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-10+30
20 ला -\frac{1}{2} वेळा गुणाकार करा.
x=20
30 ते -10 जोडा.
x=20,y=20
सिस्टम आता सोडवली आहे.
x-y=0
दुसर्‍या समीकरणाचा विचार करा. दोन्ही बाजूंकडून y वजा करा.
2x+y=60,x-y=0
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}2&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\0\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}2&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}60\\0\end{matrix}\right)
समीकरणाला \left(\begin{matrix}2&1\\1&-1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}60\\0\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}60\\0\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-1}&-\frac{1}{2\left(-1\right)-1}\\-\frac{1}{2\left(-1\right)-1}&\frac{2}{2\left(-1\right)-1}\end{matrix}\right)\left(\begin{matrix}60\\0\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}60\\0\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 60\\\frac{1}{3}\times 60\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\20\end{matrix}\right)
अंकगणित करा.
x=20,y=20
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
x-y=0
दुसर्‍या समीकरणाचा विचार करा. दोन्ही बाजूंकडून y वजा करा.
2x+y=60,x-y=0
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
2x+y=60,2x+2\left(-1\right)y=0
2x आणि x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 1 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने गुणाकार करा.
2x+y=60,2x-2y=0
सरलीकृत करा.
2x-2x+y+2y=60
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 2x+y=60 मधून 2x-2y=0 वजा करा.
y+2y=60
2x ते -2x जोडा. 2x आणि -2x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
3y=60
y ते 2y जोडा.
y=20
दोन्ही बाजूंना 3 ने विभागा.
x-20=0
x-y=0 मध्ये y साठी 20 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=20
समीकरणाच्या दोन्ही बाजूस 20 जोडा.
x=20,y=20
सिस्टम आता सोडवली आहे.