मुख्य सामग्री वगळा
x, y साठी सोडवा
Tick mark Image
आलेख

वेब शोधामधून समान प्रश्न

शेअर करा

2x+3y-4=0,x+3y=5
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
2x+3y-4=0
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
2x+3y=4
समीकरणाच्या दोन्ही बाजूस 4 जोडा.
2x=-3y+4
समीकरणाच्या दोन्ही बाजूंमधून 3y वजा करा.
x=\frac{1}{2}\left(-3y+4\right)
दोन्ही बाजूंना 2 ने विभागा.
x=-\frac{3}{2}y+2
-3y+4 ला \frac{1}{2} वेळा गुणाकार करा.
-\frac{3}{2}y+2+3y=5
इतर समीकरणामध्ये x साठी -\frac{3y}{2}+2 चा विकल्प वापरा, x+3y=5.
\frac{3}{2}y+2=5
-\frac{3y}{2} ते 3y जोडा.
\frac{3}{2}y=3
समीकरणाच्या दोन्ही बाजूंमधून 2 वजा करा.
y=2
समीकरणाच्या दोन्ही बाजूंना \frac{3}{2} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
x=-\frac{3}{2}\times 2+2
x=-\frac{3}{2}y+2 मध्ये y साठी 2 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=-3+2
2 ला -\frac{3}{2} वेळा गुणाकार करा.
x=-1
2 ते -3 जोडा.
x=-1,y=2
सिस्टम आता सोडवली आहे.
2x+3y-4=0,x+3y=5
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}2&3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\5\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}2&3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}4\\5\end{matrix}\right)
समीकरणाला \left(\begin{matrix}2&3\\1&3\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}4\\5\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}4\\5\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-3}&-\frac{3}{2\times 3-3}\\-\frac{1}{2\times 3-3}&\frac{2}{2\times 3-3}\end{matrix}\right)\left(\begin{matrix}4\\5\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-\frac{1}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}4\\5\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4-5\\-\frac{1}{3}\times 4+\frac{2}{3}\times 5\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
अंकगणित करा.
x=-1,y=2
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
2x+3y-4=0,x+3y=5
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
2x-x+3y-3y-4=-5
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 2x+3y-4=0 मधून x+3y=5 वजा करा.
2x-x-4=-5
3y ते -3y जोडा. 3y आणि -3y रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
x-4=-5
2x ते -x जोडा.
x=-1
समीकरणाच्या दोन्ही बाजूस 4 जोडा.
-1+3y=5
x+3y=5 मध्ये x साठी -1 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण y साठी थेट सोडवू शकता.
3y=6
समीकरणाच्या दोन्ही बाजूस 1 जोडा.
x=-1,y=2
सिस्टम आता सोडवली आहे.