मुख्य सामग्री वगळा
m, n साठी सोडवा
Tick mark Image

वेब शोधामधून समान प्रश्न

शेअर करा

2m+3n=1,7m+3n=6
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
2m+3n=1
समान चिन्हाच्या डाव्या बाजूला m विलग करून, m साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
2m=-3n+1
समीकरणाच्या दोन्ही बाजूंमधून 3n वजा करा.
m=\frac{1}{2}\left(-3n+1\right)
दोन्ही बाजूंना 2 ने विभागा.
m=-\frac{3}{2}n+\frac{1}{2}
-3n+1 ला \frac{1}{2} वेळा गुणाकार करा.
7\left(-\frac{3}{2}n+\frac{1}{2}\right)+3n=6
इतर समीकरणामध्ये m साठी \frac{-3n+1}{2} चा विकल्प वापरा, 7m+3n=6.
-\frac{21}{2}n+\frac{7}{2}+3n=6
\frac{-3n+1}{2} ला 7 वेळा गुणाकार करा.
-\frac{15}{2}n+\frac{7}{2}=6
-\frac{21n}{2} ते 3n जोडा.
-\frac{15}{2}n=\frac{5}{2}
समीकरणाच्या दोन्ही बाजूंमधून \frac{7}{2} वजा करा.
n=-\frac{1}{3}
समीकरणाच्या दोन्ही बाजूंना -\frac{15}{2} ने विभागा, जे दोन्ही बाजूंना अंशाच्या व्युत्क्रमणाने गुणण्यासारखेच आहे.
m=-\frac{3}{2}\left(-\frac{1}{3}\right)+\frac{1}{2}
m=-\frac{3}{2}n+\frac{1}{2} मध्ये n साठी -\frac{1}{3} विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण m साठी थेट सोडवू शकता.
m=\frac{1+1}{2}
अंशाला अंशांच्या संख्येने आणि विभाजकाला विभाजकांच्या संख्येने गुणाकार करून -\frac{1}{3} चा -\frac{3}{2} वेळा गुणाकार करा. नंतर शक्य तितक्या कमी टर्म्सपर्यंत अंश कमी करा.
m=1
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{1}{2} ते \frac{1}{2} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
m=1,n=-\frac{1}{3}
सिस्टम आता सोडवली आहे.
2m+3n=1,7m+3n=6
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}2&3\\7&3\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}1\\6\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}2&3\\7&3\end{matrix}\right))\left(\begin{matrix}2&3\\7&3\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\7&3\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
समीकरणाला \left(\begin{matrix}2&3\\7&3\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\7&3\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\7&3\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-3\times 7}&-\frac{3}{2\times 3-3\times 7}\\-\frac{7}{2\times 3-3\times 7}&\frac{2}{2\times 3-3\times 7}\end{matrix}\right)\left(\begin{matrix}1\\6\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{1}{5}\\\frac{7}{15}&-\frac{2}{15}\end{matrix}\right)\left(\begin{matrix}1\\6\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}+\frac{1}{5}\times 6\\\frac{7}{15}-\frac{2}{15}\times 6\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}1\\-\frac{1}{3}\end{matrix}\right)
अंकगणित करा.
m=1,n=-\frac{1}{3}
मॅट्रिक्सचे m आणि n घटक बाहेर काढा.
2m+3n=1,7m+3n=6
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
2m-7m+3n-3n=1-6
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून 2m+3n=1 मधून 7m+3n=6 वजा करा.
2m-7m=1-6
3n ते -3n जोडा. 3n आणि -3n रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-5m=1-6
2m ते -7m जोडा.
-5m=-5
1 ते -6 जोडा.
m=1
दोन्ही बाजूंना -5 ने विभागा.
7+3n=6
7m+3n=6 मध्ये m साठी 1 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण n साठी थेट सोडवू शकता.
3n=-1
समीकरणाच्या दोन्ही बाजूंमधून 7 वजा करा.
n=-\frac{1}{3}
दोन्ही बाजूंना 3 ने विभागा.
m=1,n=-\frac{1}{3}
सिस्टम आता सोडवली आहे.