\left\{ \begin{array} { c } { 2 x + 3 y = 13 } \\ { - 6 x + y = 11 } \end{array} \right.
x, y साठी सोडवा
x=-1
y=5
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
2x+3y=13,-6x+y=11
विकल्प वापरून समीकरणांची जोडी सोडविण्यासाठी, प्रथम कोणत्यातरी चल राशीसाठी समीकरणांपैकी एक सोडवा. नंतर तो परिणाम त्या चल राशीसाठी दुसर्या समीकरणात विकल्प म्हणून वापरा.
2x+3y=13
समान चिन्हाच्या डाव्या बाजूला x विलग करून, x साठी समीकरणांपैकी एक सोडविण्यासाठी निवडा.
2x=-3y+13
समीकरणाच्या दोन्ही बाजूंमधून 3y वजा करा.
x=\frac{1}{2}\left(-3y+13\right)
दोन्ही बाजूंना 2 ने विभागा.
x=-\frac{3}{2}y+\frac{13}{2}
-3y+13 ला \frac{1}{2} वेळा गुणाकार करा.
-6\left(-\frac{3}{2}y+\frac{13}{2}\right)+y=11
इतर समीकरणामध्ये x साठी \frac{-3y+13}{2} चा विकल्प वापरा, -6x+y=11.
9y-39+y=11
\frac{-3y+13}{2} ला -6 वेळा गुणाकार करा.
10y-39=11
9y ते y जोडा.
10y=50
समीकरणाच्या दोन्ही बाजूस 39 जोडा.
y=5
दोन्ही बाजूंना 10 ने विभागा.
x=-\frac{3}{2}\times 5+\frac{13}{2}
x=-\frac{3}{2}y+\frac{13}{2} मध्ये y साठी 5 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
x=\frac{-15+13}{2}
5 ला -\frac{3}{2} वेळा गुणाकार करा.
x=-1
सामायिक विभाजक शोधून आणि अंशे जोडून \frac{13}{2} ते -\frac{15}{2} जोडा. नंतर शक्य असल्यास भागांश निम्नतम टर्मपर्यंत कमी करा.
x=-1,y=5
सिस्टम आता सोडवली आहे.
2x+3y=13,-6x+y=11
समीकरणे मानक फॉर्ममध्ये ठेवा आणि नंतर समीकरणांची व्यवस्था सोडविण्यासाठी मॅट्रिक्स वापरा.
\left(\begin{matrix}2&3\\-6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\11\end{matrix}\right)
मॅट्रिक्स स्वरूपात समीकरणे लिहा.
inverse(\left(\begin{matrix}2&3\\-6&1\end{matrix}\right))\left(\begin{matrix}2&3\\-6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-6&1\end{matrix}\right))\left(\begin{matrix}13\\11\end{matrix}\right)
समीकरणाला \left(\begin{matrix}2&3\\-6&1\end{matrix}\right) च्या व्यस्त मॅट्रिक्सने गुणा.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-6&1\end{matrix}\right))\left(\begin{matrix}13\\11\end{matrix}\right)
मॅट्रिक्स आणि त्याच्या व्यस्ताचा गुणाकार हा अविकारक मॅट्रिक्स आहे.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-6&1\end{matrix}\right))\left(\begin{matrix}13\\11\end{matrix}\right)
समान चिन्हाच्या डावीकडे मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3\left(-6\right)}&-\frac{3}{2-3\left(-6\right)}\\-\frac{-6}{2-3\left(-6\right)}&\frac{2}{2-3\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}13\\11\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) साठी, व्यस्त मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) आहे, म्हणून मॅट्रिक्स समीकरण मॅट्रिक्स गुणाकार उदाहरणाच्या स्वरुपात पुन्हा लिहिले जाऊ शकते.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}&-\frac{3}{20}\\\frac{3}{10}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}13\\11\end{matrix}\right)
अंकगणित करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}\times 13-\frac{3}{20}\times 11\\\frac{3}{10}\times 13+\frac{1}{10}\times 11\end{matrix}\right)
मॅट्रिक्सचा गुणाकार करा.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\5\end{matrix}\right)
अंकगणित करा.
x=-1,y=5
मॅट्रिक्सचे x आणि y घटक बाहेर काढा.
2x+3y=13,-6x+y=11
निष्कासनाद्वारे सोडविण्यासाठी, चर राशींपैकी एकाचा गुणक दोन्ही समीकरणात सारखा असलाच पाहिजे ज्यामुळे जेव्हा एक समीकरण दुसर्यातून वजा केले जाईल तेव्हा चर राशी रद्द होईल.
-6\times 2x-6\times 3y=-6\times 13,2\left(-6\right)x+2y=2\times 11
2x आणि -6x समान करण्यासाठी, प्रथम समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना -6 ने आणि द्वितीय समीकरणाच्या प्रत्येक बाजूच्या सर्व टर्म्सना 2 ने गुणाकार करा.
-12x-18y=-78,-12x+2y=22
सरलीकृत करा.
-12x+12x-18y-2y=-78-22
समान चिन्हाच्या प्रत्येक बाजूला सारखे टर्म्स वजा करून -12x-18y=-78 मधून -12x+2y=22 वजा करा.
-18y-2y=-78-22
-12x ते 12x जोडा. -12x आणि 12x रद्द करा, जे सोडवले जाऊ शकेल असे केवळ एक चल असलेले समीकरण राहिले.
-20y=-78-22
-18y ते -2y जोडा.
-20y=-100
-78 ते -22 जोडा.
y=5
दोन्ही बाजूंना -20 ने विभागा.
-6x+5=11
-6x+y=11 मध्ये y साठी 5 विकल्प म्हणून ठेवा. कारण परिणामी समीकरणात केवळ एकच चर राशी समाविष्ट आहे, आपण x साठी थेट सोडवू शकता.
-6x=6
समीकरणाच्या दोन्ही बाजूंमधून 5 वजा करा.
x=-1
दोन्ही बाजूंना -6 ने विभागा.
x=-1,y=5
सिस्टम आता सोडवली आहे.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}