मूल्यांकन करा
\frac{128}{105}\approx 1.219047619
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
\int _{0}^{2}\left(x\left(x^{2}-4x+4\right)\right)^{2}\mathrm{d}x
\left(x-2\right)^{2} विस्तारीत करण्यासाठी द्विपदीय प्रमेय वापरा \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
\int _{0}^{2}\left(x^{3}-4x^{2}+4x\right)^{2}\mathrm{d}x
x ला x^{2}-4x+4 ने गुणण्यासाठी वितरीत करण्यायोग्य गुणधर्म वापरा.
\int _{0}^{2}x^{6}-8x^{5}+24x^{4}-32x^{3}+16x^{2}\mathrm{d}x
वर्ग x^{3}-4x^{2}+4x.
\int x^{6}-8x^{5}+24x^{4}-32x^{3}+16x^{2}\mathrm{d}x
प्रथम अनिश्चित पूर्णांकाचे मूल्यांकन करा.
\int x^{6}\mathrm{d}x+\int -8x^{5}\mathrm{d}x+\int 24x^{4}\mathrm{d}x+\int -32x^{3}\mathrm{d}x+\int 16x^{2}\mathrm{d}x
टर्मनुसार बेरीज मूल्यांकित करा.
\int x^{6}\mathrm{d}x-8\int x^{5}\mathrm{d}x+24\int x^{4}\mathrm{d}x-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
प्रत्येक टर्ममधील स्थिर घटक काढा.
\frac{x^{7}}{7}-8\int x^{5}\mathrm{d}x+24\int x^{4}\mathrm{d}x-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
k\neq -1 साठी \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} तर, \int x^{6}\mathrm{d}x हा \frac{x^{7}}{7} ने बदला.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+24\int x^{4}\mathrm{d}x-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
k\neq -1 साठी \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} तर, \int x^{5}\mathrm{d}x हा \frac{x^{6}}{6} ने बदला. \frac{x^{6}}{6} ला -8 वेळा गुणाकार करा.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+\frac{24x^{5}}{5}-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
k\neq -1 साठी \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} तर, \int x^{4}\mathrm{d}x हा \frac{x^{5}}{5} ने बदला. \frac{x^{5}}{5} ला 24 वेळा गुणाकार करा.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+\frac{24x^{5}}{5}-8x^{4}+16\int x^{2}\mathrm{d}x
k\neq -1 साठी \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} तर, \int x^{3}\mathrm{d}x हा \frac{x^{4}}{4} ने बदला. \frac{x^{4}}{4} ला -32 वेळा गुणाकार करा.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+\frac{24x^{5}}{5}-8x^{4}+\frac{16x^{3}}{3}
k\neq -1 साठी \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} तर, \int x^{2}\mathrm{d}x हा \frac{x^{3}}{3} ने बदला. \frac{x^{3}}{3} ला 16 वेळा गुणाकार करा.
\frac{16x^{3}}{3}-8x^{4}+\frac{24x^{5}}{5}-\frac{4x^{6}}{3}+\frac{x^{7}}{7}
सरलीकृत करा.
\frac{16}{3}\times 2^{3}-8\times 2^{4}+\frac{24}{5}\times 2^{5}-\frac{4}{3}\times 2^{6}+\frac{2^{7}}{7}-\left(\frac{16}{3}\times 0^{3}-8\times 0^{4}+\frac{24}{5}\times 0^{5}-\frac{4}{3}\times 0^{6}+\frac{0^{7}}{7}\right)
बहुपदीचा निश्चित पूर्णांक हा पूर्णांकाच्या उच्च मर्यादेला मूल्यांकित केलेल्या बहुपदीचे कृदंत आणि पूर्णांकाच्या निम्न मर्यादेला मूल्यांकित केलेल्या बहुपदीचे कृदंत यांची वजाबाकी असते.
\frac{128}{105}
सरलीकृत करा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}