मुख्य सामग्री वगळा
मूल्यांकन करा
Tick mark Image
x संदर्भात फरक करा
Tick mark Image

वेब शोधामधून समान प्रश्न

शेअर करा

\int \frac{x\left(x-2\right)\left(x+2\right)\left(x^{2}+5\right)}{x+2}\mathrm{d}x
\frac{x^{5}+x^{3}-20x}{x+2} मध्ये आधीच अवयव न काढलेल्या एक्सप्रेशन्सचा अवयव काढा.
\int x\left(x-2\right)\left(x^{2}+5\right)\mathrm{d}x
अंशांश आणि भागांश दोन्हींमध्ये x+2 रद्द करा.
\int x^{4}-2x^{3}+5x^{2}-10x\mathrm{d}x
एक्सप्रेशन विस्तृत करा.
\int x^{4}\mathrm{d}x+\int -2x^{3}\mathrm{d}x+\int 5x^{2}\mathrm{d}x+\int -10x\mathrm{d}x
टर्मनुसार बेरीज मूल्यांकित करा.
\int x^{4}\mathrm{d}x-2\int x^{3}\mathrm{d}x+5\int x^{2}\mathrm{d}x-10\int x\mathrm{d}x
प्रत्येक टर्ममधील स्थिर घटक काढा.
\frac{x^{5}}{5}-2\int x^{3}\mathrm{d}x+5\int x^{2}\mathrm{d}x-10\int x\mathrm{d}x
k\neq -1 साठी \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} तर, \int x^{4}\mathrm{d}x हा \frac{x^{5}}{5} ने बदला.
\frac{x^{5}}{5}-\frac{x^{4}}{2}+5\int x^{2}\mathrm{d}x-10\int x\mathrm{d}x
k\neq -1 साठी \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} तर, \int x^{3}\mathrm{d}x हा \frac{x^{4}}{4} ने बदला. \frac{x^{4}}{4} ला -2 वेळा गुणाकार करा.
\frac{x^{5}}{5}-\frac{x^{4}}{2}+\frac{5x^{3}}{3}-10\int x\mathrm{d}x
k\neq -1 साठी \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} तर, \int x^{2}\mathrm{d}x हा \frac{x^{3}}{3} ने बदला. \frac{x^{3}}{3} ला 5 वेळा गुणाकार करा.
\frac{x^{5}}{5}-\frac{x^{4}}{2}+\frac{5x^{3}}{3}-5x^{2}
k\neq -1 साठी \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} तर, \int x\mathrm{d}x हा \frac{x^{2}}{2} ने बदला. \frac{x^{2}}{2} ला -10 वेळा गुणाकार करा.
-5x^{2}+\frac{5x^{3}}{3}-\frac{x^{4}}{2}+\frac{x^{5}}{5}
सरलीकृत करा.
-5x^{2}+\frac{5x^{3}}{3}-\frac{x^{4}}{2}+\frac{x^{5}}{5}+С
F\left(x\right) हे f\left(x\right) चे प्रतिकृदंत असल्यास, f\left(x\right) च्या सर्व प्रतिकृदंतांचे संच F\left(x\right)+C ने मिळतात. म्हणून, मूल्यांकनाचा स्थिरांक C\in \mathrm{R} उत्तरामध्ये मिळवा.