मुख्य सामग्री वगळा
s साठी सोडवा
Tick mark Image

वेब शोधामधून समान प्रश्न

शेअर करा

\int e^{x}\cos(x)\mathrm{d}x=\frac{1}{2}e^{x}\cos(x)+\frac{1}{2}ie^{x}s
\frac{1}{2}e^{x} ला \cos(x)+si ने गुणण्यासाठी वितरीत करण्‍यायोग्‍य गुणधर्म वापरा.
\frac{1}{2}e^{x}\cos(x)+\frac{1}{2}ie^{x}s=\int e^{x}\cos(x)\mathrm{d}x
बाजू स्वॅप करा ज्यामुळे सर्व चल टर्म डाव्या बाजूला असतील.
\frac{1}{2}ie^{x}s=\int e^{x}\cos(x)\mathrm{d}x-\frac{1}{2}e^{x}\cos(x)
दोन्ही बाजूंकडून \frac{1}{2}e^{x}\cos(x) वजा करा.
\frac{ie^{x}}{2}s=\int \cos(x)e^{x}\mathrm{d}x-\frac{\cos(x)e^{x}}{2}
समीकरण मानक रूपामध्ये आहे.
\frac{2\times \frac{ie^{x}}{2}s}{ie^{x}}=\frac{2\left(-\frac{\cos(x)e^{x}}{2}+\left(\frac{1}{4}-\frac{1}{4}i\right)e^{i\ln(e^{x})+x}+\left(\frac{1}{4}+\frac{1}{4}i\right)e^{-i\ln(e^{x})+x}+С\right)}{ie^{x}}
दोन्ही बाजूंना \frac{1}{2}ie^{x} ने विभागा.
s=\frac{2\left(-\frac{\cos(x)e^{x}}{2}+\left(\frac{1}{4}-\frac{1}{4}i\right)e^{i\ln(e^{x})+x}+\left(\frac{1}{4}+\frac{1}{4}i\right)e^{-i\ln(e^{x})+x}+С\right)}{ie^{x}}
\frac{1}{2}ie^{x} ने केलेला भागाकार \frac{1}{2}ie^{x} ने केलेला गुणाकार पूर्ववत करतो.
s=\frac{\left(-1-i\right)e^{i\ln(e^{x})}+\left(1-i\right)e^{-i\ln(e^{x})}+\frac{2С}{e^{x}}+2i\cos(x)}{2}
\left(\frac{1}{4}+\frac{1}{4}i\right)e^{x-i\ln(e^{x})}+\left(\frac{1}{4}-\frac{1}{4}i\right)e^{x+i\ln(e^{x})}+С-\frac{e^{x}\cos(x)}{2} ला \frac{1}{2}ie^{x} ने भागा.