मुख्य सामग्री वगळा
मूल्यांकन करा
Tick mark Image
x संदर्भात फरक करा
Tick mark Image

वेब शोधामधून समान प्रश्न

शेअर करा

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}})
\frac{x^{2}-x}{x^{3}-x^{2}-x+1} मध्ये आधीच अवयव न काढलेल्या एक्सप्रेशन्सचा अवयव काढा.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(x-1\right)\left(x+1\right)})
अंशांश आणि भागांश दोन्हींमध्ये x-1 रद्द करा.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{x^{2}-1})
\left(x-1\right)\left(x+1\right) वाचारात घ्या. हा नियम वापरून चौरसांच्या फरकामध्ये गुणाकाराची स्थित्यंतरे केली जाऊ शकतात: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. वर्ग 1.
\frac{\left(x^{2}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-1)}{\left(x^{2}-1\right)^{2}}
कोणत्याही दोन डिफरंशिएबल फंक्शनसाठी, दोन फंक्शन्सच्या भागाकाराचा कृदंत ही अंशांच्या कृदंतांची विभाजकावेळी आणि विभाजाकांच्या कृदंतांची अंशांवेळी वजाबाकी आहे, अंश वर्गाने सर्वांचा भागाकार केलेला.
\frac{\left(x^{2}-1\right)x^{1-1}-x^{1}\times 2x^{2-1}}{\left(x^{2}-1\right)^{2}}
बहुपदीचे डेरिव्हेशन हे त्याच्या टर्म्सच्या डेरिव्हेशन ची बेरीज आहे. कोणत्याही स्थिर टर्मचे डेरिव्हेशन 0 आहे. ax^{n} डेरिव्हेशन nax^{n-1} आहे.
\frac{\left(x^{2}-1\right)x^{0}-x^{1}\times 2x^{1}}{\left(x^{2}-1\right)^{2}}
अंकगणित करा.
\frac{x^{2}x^{0}-x^{0}-x^{1}\times 2x^{1}}{\left(x^{2}-1\right)^{2}}
वितरीत करण्‍यायोग्‍य गुणधर्म वापरून विस्तृत करा.
\frac{x^{2}-x^{0}-2x^{1+1}}{\left(x^{2}-1\right)^{2}}
समान आधाराच्या पॉवर्सचा गुणाकार करण्यासाठी, त्यांच्या घातांकांची बेरीज करा.
\frac{x^{2}-x^{0}-2x^{2}}{\left(x^{2}-1\right)^{2}}
अंकगणित करा.
\frac{\left(1-2\right)x^{2}-x^{0}}{\left(x^{2}-1\right)^{2}}
टर्म्ससारखे एकत्रित करा.
\frac{-x^{2}-x^{0}}{\left(x^{2}-1\right)^{2}}
1 मधून 2 वजा करा.
\frac{-x^{2}-1}{\left(x^{2}-1\right)^{2}}
0 वगळता कोणत्याही टर्मसाठी t, t^{0}=1.