x संदर्भात फरक करा
2
मूल्यांकन करा
2x
आलेख
शेअर करा
क्लिपबोर्डमध्ये प्रतिलिपी करण्यात आली
2x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x})+\frac{1}{x}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2})
कोणत्याही दोन डिफरंशिएबल फंक्शन्ससाठी, दोन फंक्शनच्या उत्पादनाचे कृदंत हे द्वितीयेच्या कृदंताच्या प्रथम फंक्शन वेळा आणि प्रथमेच्या कृदंताच्या द्वितीय फंक्शन वेळा यांची बेरीज असते.
2x^{2}\left(-1\right)x^{-1-1}+\frac{1}{x}\times 2\times 2x^{2-1}
बहुपदीचे डेरिव्हेशन हे त्याच्या टर्म्सच्या डेरिव्हेशन ची बेरीज आहे. कोणत्याही स्थिर टर्मचे डेरिव्हेशन 0 आहे. ax^{n} डेरिव्हेशन nax^{n-1} आहे.
2x^{2}\left(-1\right)x^{-2}+\frac{1}{x}\times 4x^{1}
सरलीकृत करा.
-2x^{2-2}+4x^{-1+1}
समान आधाराच्या पॉवर्सचा गुणाकार करण्यासाठी, त्यांच्या घातांकांची बेरीज करा.
-2x^{0}+4x^{0}
सरलीकृत करा.
-2+4\times 1
0 वगळता कोणत्याही टर्मसाठी t, t^{0}=1.
-2+4
कोणत्याही टर्मसाठी t, t\times 1=t आणि 1t=t.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{1}x^{2-1})
समान आधाराच्या पॉवर्सचा भागाकार करण्यासाठी, अंशाच्या घातांकामधून विभाजकाचा घातांक वजा करा.
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1})
अंकगणित करा.
2x^{1-1}
बहुपदीचे डेरिव्हेशन हे त्याच्या टर्म्सच्या डेरिव्हेशन ची बेरीज आहे. कोणत्याही स्थिर टर्मचे डेरिव्हेशन 0 आहे. ax^{n} डेरिव्हेशन nax^{n-1} आहे.
2x^{0}
अंकगणित करा.
2\times 1
0 वगळता कोणत्याही टर्मसाठी t, t^{0}=1.
2
कोणत्याही टर्मसाठी t, t\times 1=t आणि 1t=t.
2x
अंशांश आणि भागांश दोन्हींमध्ये x रद्द करा.
उदाहरणे
क्वाड्रॅटिक समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेषीय समीकरण
y = 3x + 4
अंकगणित
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
एकाच वेळी समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
डिफ्रेन्शिएशन
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
इंटीग्रेशन
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}